| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014 |
- // misc.h - originally written and placed in the public domain by Wei Dai
- /// \file misc.h
- /// \brief Utility functions for the Crypto++ library.
- #ifndef CRYPTOPP_MISC_H
- #define CRYPTOPP_MISC_H
- #include "config.h"
- #include "cryptlib.h"
- #include "secblockfwd.h"
- #include "smartptr.h"
- #include "stdcpp.h"
- #include "trap.h"
- #if !defined(CRYPTOPP_DOXYGEN_PROCESSING)
- #if (CRYPTOPP_MSC_VERSION)
- # pragma warning(push)
- # pragma warning(disable: 4146 4514)
- # if (CRYPTOPP_MSC_VERSION >= 1400)
- # pragma warning(disable: 6326)
- # endif
- #endif
- // Issue 340 and Issue 793
- #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
- # pragma GCC diagnostic push
- # pragma GCC diagnostic ignored "-Wconversion"
- # pragma GCC diagnostic ignored "-Wsign-conversion"
- # pragma GCC diagnostic ignored "-Wunused-function"
- #endif
- #ifdef _MSC_VER
- #if _MSC_VER >= 1400
- // VC2005 workaround: disable declarations that conflict with winnt.h
- #define _interlockedbittestandset CRYPTOPP_DISABLED_INTRINSIC_1
- #define _interlockedbittestandreset CRYPTOPP_DISABLED_INTRINSIC_2
- #define _interlockedbittestandset64 CRYPTOPP_DISABLED_INTRINSIC_3
- #define _interlockedbittestandreset64 CRYPTOPP_DISABLED_INTRINSIC_4
- #include <intrin.h>
- #undef _interlockedbittestandset
- #undef _interlockedbittestandreset
- #undef _interlockedbittestandset64
- #undef _interlockedbittestandreset64
- #define CRYPTOPP_FAST_ROTATE(x) 1
- #elif _MSC_VER >= 1300
- #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32 | (x) == 64)
- #else
- #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32)
- #endif
- #elif (defined(__MWERKS__) && TARGET_CPU_PPC) || \
- (defined(__GNUC__) && (defined(_ARCH_PWR2) || defined(_ARCH_PWR) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || defined(_ARCH_COM)))
- #define CRYPTOPP_FAST_ROTATE(x) ((x) == 32)
- #elif defined(__GNUC__) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X86) // depend on GCC's peephole optimization to generate rotate instructions
- #define CRYPTOPP_FAST_ROTATE(x) 1
- #else
- #define CRYPTOPP_FAST_ROTATE(x) 0
- #endif
- #ifdef __BORLANDC__
- #include <mem.h>
- #include <stdlib.h>
- #endif
- #if (defined(__GNUC__) || defined(__clang__)) && defined(__linux__)
- #define CRYPTOPP_BYTESWAP_AVAILABLE 1
- #include <byteswap.h>
- #endif
- // Limit to ARM A-32. Aarch64 is failing self tests.
- #if defined(__arm__) && (defined(__GNUC__) || defined(__clang__)) && (__ARM_ARCH >= 6)
- #define CRYPTOPP_ARM_BYTEREV_AVAILABLE 1
- #endif
- // Limit to ARM A-32. Aarch64 is failing self tests.
- #if defined(__arm__) && (defined(__GNUC__) || defined(__clang__)) && (__ARM_ARCH >= 7)
- #define CRYPTOPP_ARM_BITREV_AVAILABLE 1
- #endif
- #if defined(__BMI__)
- # include <x86intrin.h>
- # include <immintrin.h>
- #endif // GCC and BMI
- // More LLVM bullshit. Apple Clang 6.0 does not define them.
- // Later version of Clang defines them and results in warnings.
- #if defined(__clang__)
- # ifndef _blsr_u32
- # define _blsr_u32 __blsr_u32
- # endif
- # ifndef _blsr_u64
- # define _blsr_u64 __blsr_u64
- # endif
- # ifndef _tzcnt_u32
- # define _tzcnt_u32 __tzcnt_u32
- # endif
- # ifndef _tzcnt_u64
- # define _tzcnt_u64 __tzcnt_u64
- # endif
- #endif
- #endif // CRYPTOPP_DOXYGEN_PROCESSING
- #if CRYPTOPP_DOXYGEN_PROCESSING
- /// \brief The maximum value of a machine word
- /// \details <tt>SIZE_MAX</tt> provides the maximum value of a machine word. The value
- /// is <tt>0xffffffff</tt> on 32-bit targets, and <tt>0xffffffffffffffff</tt> on 64-bit
- /// targets.
- /// \details If <tt>SIZE_MAX</tt> is not defined, then <tt>__SIZE_MAX__</tt> is used if
- /// defined. If not defined, then <tt>SIZE_T_MAX</tt> is used if defined. If not defined,
- /// then the library uses <tt>std::numeric_limits<size_t>::max()</tt>.
- /// \details The library prefers <tt>__SIZE_MAX__</tt> or <tt>__SIZE_T_MAX__</tt> because
- /// they are effectively <tt>constexpr</tt> that is optimized well by all compilers.
- /// <tt>std::numeric_limits<size_t>::max()</tt> is not always a <tt>constexpr</tt>, and
- /// it is not always optimized well.
- # define SIZE_MAX ...
- #else
- // Its amazing portability problems still plague this simple concept in 2015.
- // http://stackoverflow.com/questions/30472731/which-c-standard-header-defines-size-max
- // Avoid NOMINMAX macro on Windows. http://support.microsoft.com/en-us/kb/143208
- #ifndef SIZE_MAX
- # if defined(__SIZE_MAX__)
- # define SIZE_MAX __SIZE_MAX__
- # elif defined(SIZE_T_MAX)
- # define SIZE_MAX SIZE_T_MAX
- # elif defined(__SIZE_TYPE__)
- # define SIZE_MAX (~(__SIZE_TYPE__)0)
- # else
- # define SIZE_MAX ((std::numeric_limits<size_t>::max)())
- # endif
- #endif
- #endif // CRYPTOPP_DOXYGEN_PROCESSING
- NAMESPACE_BEGIN(CryptoPP)
- // Forward declaration for IntToString specialization
- class Integer;
- // ************** compile-time assertion ***************
- #if CRYPTOPP_DOXYGEN_PROCESSING
- /// \brief Compile time assertion
- /// \param expr the expression to evaluate
- /// \details Asserts the expression <tt>expr</tt> during compile. If C++14 and
- /// N3928 are available, then C++14 <tt>static_assert</tt> is used. Otherwise,
- /// a <tt>CompileAssert</tt> structure is used. When the structure is used
- /// a negative-sized array triggers the assert at compile time.
- # define CRYPTOPP_COMPILE_ASSERT(expr) { ... }
- #elif defined(CRYPTOPP_CXX17_STATIC_ASSERT)
- # define CRYPTOPP_COMPILE_ASSERT(expr) static_assert(expr)
- #else // CRYPTOPP_DOXYGEN_PROCESSING
- template <bool b>
- struct CompileAssert
- {
- static char dummy[2*b-1];
- };
- #define CRYPTOPP_COMPILE_ASSERT(assertion) CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, __LINE__)
- #define CRYPTOPP_ASSERT_JOIN(X, Y) CRYPTOPP_DO_ASSERT_JOIN(X, Y)
- #define CRYPTOPP_DO_ASSERT_JOIN(X, Y) X##Y
- #if defined(CRYPTOPP_EXPORTS) || defined(CRYPTOPP_IMPORTS)
- # define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance)
- #else
- # if defined(__GNUC__) || defined(__clang__)
- # define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \
- static CompileAssert<(assertion)> \
- CRYPTOPP_ASSERT_JOIN(cryptopp_CRYPTOPP_ASSERT_, instance) __attribute__ ((unused))
- # else
- # define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \
- static CompileAssert<(assertion)> \
- CRYPTOPP_ASSERT_JOIN(cryptopp_CRYPTOPP_ASSERT_, instance)
- # endif // GCC or Clang
- #endif
- #endif // CRYPTOPP_DOXYGEN_PROCESSING
- // ************** count elements in an array ***************
- #if CRYPTOPP_DOXYGEN_PROCESSING
- /// \brief Counts elements in an array
- /// \param arr an array of elements
- /// \details COUNTOF counts elements in an array. On Windows COUNTOF(x) is defined
- /// to <tt>_countof(x)</tt> to ensure correct results for pointers.
- /// \note COUNTOF does not produce correct results with pointers, and an array must be used.
- /// <tt>sizeof(x)/sizeof(x[0])</tt> suffers the same problem. The risk is eliminated by using
- /// <tt>_countof(x)</tt> on Windows. Windows will provide the immunity for other platforms.
- # define COUNTOF(arr)
- #else
- // VS2005 added _countof
- #ifndef COUNTOF
- # if defined(_MSC_VER) && (_MSC_VER >= 1400)
- # define COUNTOF(x) _countof(x)
- # else
- # define COUNTOF(x) (sizeof(x)/sizeof(x[0]))
- # endif
- #endif // COUNTOF
- #endif // CRYPTOPP_DOXYGEN_PROCESSING
- // ************** misc classes ***************
- /// \brief An Empty class
- /// \details The Empty class can be used as a template parameter <tt>BASE</tt> when no base class exists.
- class CRYPTOPP_DLL Empty
- {
- };
- #if !defined(CRYPTOPP_DOXYGEN_PROCESSING)
- template <class BASE1, class BASE2>
- class CRYPTOPP_NO_VTABLE TwoBases : public BASE1, public BASE2
- {
- };
- template <class BASE1, class BASE2, class BASE3>
- class CRYPTOPP_NO_VTABLE ThreeBases : public BASE1, public BASE2, public BASE3
- {
- };
- #endif // CRYPTOPP_DOXYGEN_PROCESSING
- /// \tparam T class or type
- /// \brief Uses encapsulation to hide an object in derived classes
- /// \details The object T is declared as protected.
- template <class T>
- class ObjectHolder
- {
- protected:
- T m_object;
- };
- /// \brief Ensures an object is not copyable
- /// \details NotCopyable ensures an object is not copyable by making the
- /// copy constructor and assignment operator private. Deleters are used
- /// under C++11.
- /// \sa Clonable class
- class NotCopyable
- {
- public:
- NotCopyable() {}
- #if CRYPTOPP_CXX11_DELETED_FUNCTIONS
- NotCopyable(const NotCopyable &) = delete;
- void operator=(const NotCopyable &) = delete;
- #else
- private:
- NotCopyable(const NotCopyable &);
- void operator=(const NotCopyable &);
- #endif
- };
- /// \brief An object factory function
- /// \tparam T class or type
- /// \details NewObject overloads operator()().
- template <class T>
- struct NewObject
- {
- T* operator()() const {return new T;}
- };
- #if CRYPTOPP_DOXYGEN_PROCESSING
- /// \brief A memory barrier
- /// \details MEMORY_BARRIER attempts to ensure reads and writes are completed
- /// in the absence of a language synchronization point. It is used by the
- /// Singleton class if the compiler supports it. The barrier is provided at the
- /// customary places in a double-checked initialization.
- /// \details Internally, MEMORY_BARRIER uses <tt>std::atomic_thread_fence</tt> if
- /// C++11 atomics are available. Otherwise, <tt>intrinsic(_ReadWriteBarrier)</tt>,
- /// <tt>_ReadWriteBarrier()</tt> or <tt>__asm__("" ::: "memory")</tt> is used.
- #define MEMORY_BARRIER ...
- #else
- #if defined(CRYPTOPP_CXX11_ATOMIC)
- # define MEMORY_BARRIER() std::atomic_thread_fence(std::memory_order_acq_rel)
- #elif (_MSC_VER >= 1400)
- # pragma intrinsic(_ReadWriteBarrier)
- # define MEMORY_BARRIER() _ReadWriteBarrier()
- #elif defined(__INTEL_COMPILER)
- # define MEMORY_BARRIER() __memory_barrier()
- #elif defined(__GNUC__) || defined(__clang__)
- # define MEMORY_BARRIER() __asm__ __volatile__ ("" ::: "memory")
- #else
- # define MEMORY_BARRIER()
- #endif
- #endif // CRYPTOPP_DOXYGEN_PROCESSING
- /// \brief Restricts the instantiation of a class to one static object without locks
- /// \tparam T the class or type
- /// \tparam F the object factory for T
- /// \tparam instance an instance counter for the class object
- /// \details This class safely initializes a static object in a multi-threaded environment. For C++03
- /// and below it will do so without using locks for portability. If two threads call Ref() at the same
- /// time, they may get back different references, and one object may end up being memory leaked. This
- /// is by design and it avoids a subtle initialization problem in a multi-threaded environment with thread
- /// local storage on early Windows platforms, like Windows XP and Windows 2003.
- /// \details For C++11 and above, a standard double-checked locking pattern with thread fences
- /// are used. The locks and fences are standard and do not hinder portability.
- /// \details Microsoft's C++11 implementation provides the necessary primitive support on Windows Vista and
- /// above when using Visual Studio 2015 (<tt>cl.exe</tt> version 19.00). If C++11 is desired, you should
- /// set <tt>WINVER</tt> or <tt>_WIN32_WINNT</tt> to 0x600 (or above), and compile with Visual Studio 2015.
- /// \sa <A HREF="http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/">Double-Checked Locking
- /// is Fixed In C++11</A>, <A HREF="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2660.htm">Dynamic
- /// Initialization and Destruction with Concurrency</A> and
- /// <A HREF="http://msdn.microsoft.com/en-us/library/6yh4a9k1.aspx">Thread Local Storage (TLS)</A> on MSDN.
- /// \since Crypto++ 5.2
- template <class T, class F = NewObject<T>, int instance=0>
- class Singleton
- {
- public:
- Singleton(F objectFactory = F()) : m_objectFactory(objectFactory) {}
- // prevent this function from being inlined
- CRYPTOPP_NOINLINE const T & Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const;
- private:
- F m_objectFactory;
- };
- /// \brief Return a reference to the inner Singleton object
- /// \tparam T the class or type
- /// \tparam F the object factory for T
- /// \tparam instance an instance counter for the class object
- /// \details Ref() is used to create the object using the object factory. The
- /// object is only created once with the limitations discussed in the class documentation.
- /// \sa <A HREF="http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/">Double-Checked Locking is Fixed In C++11</A>
- /// \since Crypto++ 5.2
- template <class T, class F, int instance>
- const T & Singleton<T, F, instance>::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const
- {
- #if defined(CRYPTOPP_CXX11_ATOMIC) && defined(CRYPTOPP_CXX11_SYNCHRONIZATION) && defined(CRYPTOPP_CXX11_STATIC_INIT)
- static std::mutex s_mutex;
- static std::atomic<T*> s_pObject;
- T *p = s_pObject.load(std::memory_order_relaxed);
- std::atomic_thread_fence(std::memory_order_acquire);
- if (p)
- return *p;
- std::lock_guard<std::mutex> lock(s_mutex);
- p = s_pObject.load(std::memory_order_relaxed);
- std::atomic_thread_fence(std::memory_order_acquire);
- if (p)
- return *p;
- T *newObject = m_objectFactory();
- s_pObject.store(newObject, std::memory_order_relaxed);
- std::atomic_thread_fence(std::memory_order_release);
- return *newObject;
- #else
- static volatile simple_ptr<T> s_pObject;
- T *p = s_pObject.m_p;
- MEMORY_BARRIER();
- if (p)
- return *p;
- T *newObject = m_objectFactory();
- p = s_pObject.m_p;
- MEMORY_BARRIER();
- if (p)
- {
- delete newObject;
- return *p;
- }
- s_pObject.m_p = newObject;
- MEMORY_BARRIER();
- return *newObject;
- #endif
- }
- // ************** misc functions ***************
- /// \brief Create a pointer with an offset
- /// \tparam PTR a pointer type
- /// \tparam OFF a size type
- /// \param pointer a pointer
- /// \param offset a offset into the pointer
- /// \details PtrAdd can be used to squash Clang and GCC
- /// UBsan findings for pointer addition and subtraction.
- template <typename PTR, typename OFF>
- inline PTR PtrAdd(PTR pointer, OFF offset)
- {
- return pointer+static_cast<ptrdiff_t>(offset);
- }
- /// \brief Create a pointer with an offset
- /// \tparam PTR a pointer type
- /// \tparam OFF a size type
- /// \param pointer a pointer
- /// \param offset a offset into the pointer
- /// \details PtrSub can be used to squash Clang and GCC
- /// UBsan findings for pointer addition and subtraction.
- template <typename PTR, typename OFF>
- inline PTR PtrSub(PTR pointer, OFF offset)
- {
- return pointer-static_cast<ptrdiff_t>(offset);
- }
- /// \brief Determine pointer difference
- /// \tparam PTR a pointer type
- /// \param pointer1 the first pointer
- /// \param pointer2 the second pointer
- /// \details PtrDiff can be used to squash Clang and GCC
- /// UBsan findings for pointer addition and subtraction.
- /// pointer1 and pointer2 must point to the same object or
- /// array (or one past the end), and yields the number of
- /// elements (not bytes) difference.
- template <typename PTR>
- inline ptrdiff_t PtrDiff(const PTR pointer1, const PTR pointer2)
- {
- return pointer1 - pointer2;
- }
- /// \brief Determine pointer difference
- /// \tparam PTR a pointer type
- /// \param pointer1 the first pointer
- /// \param pointer2 the second pointer
- /// \details PtrByteDiff can be used to squash Clang and GCC
- /// UBsan findings for pointer addition and subtraction.
- /// pointer1 and pointer2 must point to the same object or
- /// array (or one past the end), and yields the number of
- /// bytes (not elements) difference.
- template <typename PTR>
- inline size_t PtrByteDiff(const PTR pointer1, const PTR pointer2)
- {
- return (size_t)(reinterpret_cast<uintptr_t>(pointer1) - reinterpret_cast<uintptr_t>(pointer2));
- }
- /// \brief Pointer to the first element of a string
- /// \param str std::string
- /// \details BytePtr returns NULL pointer for an empty string.
- /// \return Pointer to the first element of a string
- /// \since Crypto++ 8.0
- inline byte* BytePtr(std::string& str)
- {
- // Caller wants a writable pointer
- CRYPTOPP_ASSERT(str.empty() == false);
- if (str.empty())
- return NULLPTR;
- return reinterpret_cast<byte*>(&str[0]);
- }
- /// \brief Pointer to the first element of a string
- /// \param str SecByteBlock
- /// \details BytePtr returns NULL pointer for an empty string.
- /// \return Pointer to the first element of a string
- /// \since Crypto++ 8.3
- byte* BytePtr(SecByteBlock& str);
- /// \brief Const pointer to the first element of a string
- /// \param str std::string
- /// \details ConstBytePtr returns non-NULL pointer for an empty string.
- /// \return Pointer to the first element of a string
- /// \since Crypto++ 8.0
- inline const byte* ConstBytePtr(const std::string& str)
- {
- if (str.empty())
- return NULLPTR;
- return reinterpret_cast<const byte*>(&str[0]);
- }
- /// \brief Const pointer to the first element of a string
- /// \param str SecByteBlock
- /// \details ConstBytePtr returns non-NULL pointer for an empty string.
- /// \return Pointer to the first element of a string
- /// \since Crypto++ 8.3
- const byte* ConstBytePtr(const SecByteBlock& str);
- /// \brief Size of a string
- /// \param str std::string
- /// \return size of a string
- /// \since Crypto++ 8.3
- inline size_t BytePtrSize(const std::string& str)
- {
- return str.size();
- }
- /// \brief Size of a string
- /// \param str SecByteBlock
- /// \return size of a string
- /// \since Crypto++ 8.3
- size_t BytePtrSize(const SecByteBlock& str);
- /// \brief Integer value
- /// \details EnumToInt avoids C++20 enum-enum conversion
- /// warnings under GCC and Clang. C++11 and above use a
- /// constexpr function. C++03 and below use a macro due
- /// to [lack of] constexpr-ness in early versions of C++.
- /// \since Crypto++ 8.6
- #if (CRYPTOPP_CXX11_CONSTEXPR)
- template <typename T>
- constexpr int EnumToInt(T v) {
- return static_cast<int>(v);
- }
- #else
- # define EnumToInt(v) static_cast<int>(v)
- #endif
- #if (!__STDC_WANT_SECURE_LIB__ && !defined(_MEMORY_S_DEFINED)) || defined(CRYPTOPP_WANT_SECURE_LIB)
- /// \brief Bounds checking replacement for memcpy()
- /// \param dest pointer to the destination memory block
- /// \param sizeInBytes size of the destination memory block, in bytes
- /// \param src pointer to the source memory block
- /// \param count the number of bytes to copy
- /// \throw InvalidArgument
- /// \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially
- /// unsafe functions like memcpy(), strcpy() and memmove(). However,
- /// not all standard libraries provides them, like Glibc. The library's
- /// memcpy_s() is a near-drop in replacement. Its only a near-replacement
- /// because the library's version throws an InvalidArgument on a bounds violation.
- /// \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__.
- /// If __STDC_WANT_SECURE_LIB__ is not defined or defined to 0, then the library
- /// makes memcpy_s() and memmove_s() available. The library will also optionally
- /// make the symbols available if <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is defined.
- /// <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is in config.h, but it is disabled by default.
- /// \details memcpy_s() will assert the pointers src and dest are not NULL
- /// in debug builds. Passing NULL for either pointer is undefined behavior.
- inline void memcpy_s(void *dest, size_t sizeInBytes, const void *src, size_t count)
- {
- // Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55
- // Pointers must be valid; otherwise undefined behavior
- CRYPTOPP_ASSERT(dest != NULLPTR); CRYPTOPP_ASSERT(src != NULLPTR);
- // Restricted pointers. We want to check ranges, but it is not clear how to do it.
- CRYPTOPP_ASSERT(src != dest);
- // Destination buffer must be large enough to satisfy request
- CRYPTOPP_ASSERT(sizeInBytes >= count);
- if (count > sizeInBytes)
- throw InvalidArgument("memcpy_s: buffer overflow");
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(push)
- # pragma warning(disable: 4996)
- # if (CRYPTOPP_MSC_VERSION >= 1400)
- # pragma warning(disable: 6386)
- # endif
- #endif
- if (src != NULLPTR && dest != NULLPTR)
- std::memcpy(dest, src, count);
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(pop)
- #endif
- }
- /// \brief Bounds checking replacement for memmove()
- /// \param dest pointer to the destination memory block
- /// \param sizeInBytes size of the destination memory block, in bytes
- /// \param src pointer to the source memory block
- /// \param count the number of bytes to copy
- /// \throw InvalidArgument
- /// \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially
- /// unsafe functions like memcpy(), strcpy() and memmove(). However,
- /// not all standard libraries provides them, like Glibc. The library's
- /// memmove_s() is a near-drop in replacement. Its only a near-replacement
- /// because the library's version throws an InvalidArgument on a bounds violation.
- /// \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__.
- /// If __STDC_WANT_SECURE_LIB__ is not defined or defined to 0, then the library
- /// makes memcpy_s() and memmove_s() available. The library will also optionally
- /// make the symbols available if <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is defined.
- /// <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is in config.h, but it is disabled by default.
- /// \details memmove_s() will assert the pointers src and dest are not NULL
- /// in debug builds. Passing NULL for either pointer is undefined behavior.
- inline void memmove_s(void *dest, size_t sizeInBytes, const void *src, size_t count)
- {
- // Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55
- // Pointers must be valid; otherwise undefined behavior
- CRYPTOPP_ASSERT(dest != NULLPTR); CRYPTOPP_ASSERT(src != NULLPTR);
- // Destination buffer must be large enough to satisfy request
- CRYPTOPP_ASSERT(sizeInBytes >= count);
- if (count > sizeInBytes)
- throw InvalidArgument("memmove_s: buffer overflow");
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(push)
- # pragma warning(disable: 4996)
- # if (CRYPTOPP_MSC_VERSION >= 1400)
- # pragma warning(disable: 6386)
- # endif
- #endif
- if (src != NULLPTR && dest != NULLPTR)
- std::memmove(dest, src, count);
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(pop)
- #endif
- }
- #if __BORLANDC__ >= 0x620
- // C++Builder 2010 workaround: can't use std::memcpy_s
- // because it doesn't allow 0 lengths
- # define memcpy_s CryptoPP::memcpy_s
- # define memmove_s CryptoPP::memmove_s
- #endif
- #endif // __STDC_WANT_SECURE_LIB__
- /// \brief Swaps two variables which are arrays
- /// \tparam T class or type
- /// \param a the first value
- /// \param b the second value
- /// \details C++03 does not provide support for <tt>std::swap(__m128i a, __m128i b)</tt>
- /// because <tt>__m128i</tt> is an <tt>unsigned long long[2]</tt>. Most compilers
- /// support it out of the box, but Sun Studio C++ compilers 12.2 and 12.3 do not.
- /// \sa <A HREF="http://stackoverflow.com/q/38417413">How to swap two __m128i variables
- /// in C++03 given its an opaque type and an array?</A> on Stack Overflow.
- template <class T>
- inline void vec_swap(T& a, T& b)
- {
- // __m128i is an unsigned long long[2], and support for swapping it was
- // not added until C++11. SunCC 12.1 - 12.3 fail to consume the swap; while
- // SunCC 12.4 consumes it without -std=c++11.
- #if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120)
- T t;
- t=a, a=b, b=t;
- #else
- std::swap(a, b);
- #endif
- }
- /// \brief Memory block initializer
- /// \param ptr pointer to the memory block being written
- /// \param val the integer value to write for each byte
- /// \param num the size of the source memory block, in bytes
- /// \details Internally the function calls memset with the value <tt>val</tt>.
- /// memset_z can be used to initialize a freshly allocated memory block.
- /// To zeroize a memory block on destruction use <tt>SecureWipeBuffer</tt>.
- /// \return the pointer to the memory block
- /// \sa SecureWipeBuffer
- inline void * memset_z(void *ptr, int val, size_t num)
- {
- // avoid extraneous warning on GCC 4.3.2 Ubuntu 8.10
- #if CRYPTOPP_GCC_VERSION >= 30001 || CRYPTOPP_LLVM_CLANG_VERSION >= 20800 || \
- CRYPTOPP_APPLE_CLANG_VERSION >= 30000
- if (__builtin_constant_p(num) && num==0)
- return ptr;
- #endif
- return std::memset(ptr, val, num);
- }
- /// \brief Replacement function for std::min
- /// \tparam T class or type
- /// \param a the first value
- /// \param b the second value
- /// \return the minimum value based on a comparison of <tt>b \< a</tt> using <tt>operator\<</tt>
- /// \details STDMIN was provided because the library could not easily use std::min or std::max in Windows or Cygwin 1.1.0
- template <class T> inline const T& STDMIN(const T& a, const T& b)
- {
- return b < a ? b : a;
- }
- /// \brief Replacement function for std::max
- /// \tparam T class or type
- /// \param a the first value
- /// \param b the second value
- /// \return the minimum value based on a comparison of <tt>a \< b</tt> using <tt>operator\<</tt>
- /// \details STDMAX was provided because the library could not easily use std::min or std::max in Windows or Cygwin 1.1.0
- template <class T> inline const T& STDMAX(const T& a, const T& b)
- {
- return a < b ? b : a;
- }
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(push)
- # pragma warning(disable: 4389)
- #endif
- #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
- # pragma GCC diagnostic push
- # pragma GCC diagnostic ignored "-Wsign-compare"
- # pragma GCC diagnostic ignored "-Wstrict-overflow"
- # if (CRYPTOPP_LLVM_CLANG_VERSION >= 20800) || (CRYPTOPP_APPLE_CLANG_VERSION >= 30000)
- # pragma GCC diagnostic ignored "-Wtautological-compare"
- # elif (CRYPTOPP_GCC_VERSION >= 40300)
- # pragma GCC diagnostic ignored "-Wtype-limits"
- # endif
- #endif
- /// \brief Safe comparison of values that could be negative and incorrectly promoted
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param a the first value
- /// \param b the second value
- /// \return the minimum value based on a comparison a and b using <tt>operator<</tt>.
- /// \details The comparison <tt>b \< a</tt> is performed and the value returned is a's type T1.
- template <class T1, class T2> inline const T1 UnsignedMin(const T1& a, const T2& b)
- {
- CRYPTOPP_COMPILE_ASSERT((sizeof(T1)<=sizeof(T2) && T2(-1)>0) || (sizeof(T1)>sizeof(T2) && T1(-1)>0));
- if (sizeof(T1)<=sizeof(T2))
- return b < (T2)a ? (T1)b : a;
- else
- return (T1)b < a ? (T1)b : a;
- }
- /// \brief Tests whether a conversion from -> to is safe to perform
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param from the first value
- /// \param to the second value
- /// \return true if its safe to convert from into to, false otherwise.
- template <class T1, class T2>
- inline bool SafeConvert(T1 from, T2 &to)
- {
- to = static_cast<T2>(from);
- if (from != to || (from > 0) != (to > 0))
- return false;
- return true;
- }
- /// \brief Converts a value to a string
- /// \tparam T class or type
- /// \param value the value to convert
- /// \param base the base to use during the conversion
- /// \return the string representation of value in base.
- template <class T>
- std::string IntToString(T value, unsigned int base = 10)
- {
- // Hack... set the high bit for uppercase.
- const unsigned int HIGH_BIT = (1U << 31);
- const char CH = !!(base & HIGH_BIT) ? 'A' : 'a';
- base &= ~HIGH_BIT;
- CRYPTOPP_ASSERT(base >= 2);
- if (value == 0)
- return "0";
- bool negate = false;
- if (value < 0)
- {
- negate = true;
- value = 0-value; // VC .NET does not like -a
- }
- std::string result;
- while (value > 0)
- {
- T digit = value % base;
- result = char((digit < 10 ? '0' : (CH - 10)) + digit) + result;
- value /= base;
- }
- if (negate)
- result = "-" + result;
- return result;
- }
- /// \brief Converts an unsigned value to a string
- /// \param value the value to convert
- /// \param base the base to use during the conversion
- /// \return the string representation of value in base.
- /// \details this template function specialization was added to suppress
- /// Coverity findings on IntToString() with unsigned types.
- template <> CRYPTOPP_DLL
- std::string IntToString<word64>(word64 value, unsigned int base);
- /// \brief Converts an Integer to a string
- /// \param value the Integer to convert
- /// \param base the base to use during the conversion
- /// \return the string representation of value in base.
- /// \details This is a template specialization of IntToString(). Use it
- /// like IntToString():
- /// <pre>
- /// // Print integer in base 10
- /// Integer n...
- /// std::string s = IntToString(n, 10);
- /// </pre>
- /// \details The string is presented with lowercase letters by default. A
- /// hack is available to switch to uppercase letters without modifying
- /// the function signature.
- /// <pre>
- /// // Print integer in base 16, uppercase letters
- /// Integer n...
- /// const unsigned int UPPER = (1 << 31);
- /// std::string s = IntToString(n, (UPPER | 16));</pre>
- template <> CRYPTOPP_DLL
- std::string IntToString<Integer>(Integer value, unsigned int base);
- #if CRYPTOPP_MSC_VERSION
- # pragma warning(pop)
- #endif
- #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
- # pragma GCC diagnostic pop
- #endif
- #define RETURN_IF_NONZERO(x) size_t returnedValue = x; if (returnedValue) return returnedValue
- // this version of the macro is fastest on Pentium 3 and Pentium 4 with MSVC 6 SP5 w/ Processor Pack
- #define GETBYTE(x, y) (unsigned int)byte((x)>>(8*(y)))
- // these may be faster on other CPUs/compilers
- // #define GETBYTE(x, y) (unsigned int)(((x)>>(8*(y)))&255)
- // #define GETBYTE(x, y) (((byte *)&(x))[y])
- #define CRYPTOPP_GET_BYTE_AS_BYTE(x, y) byte((x)>>(8*(y)))
- /// \brief Returns the parity of a value
- /// \tparam T class or type
- /// \param value the value to provide the parity
- /// \return 1 if the number 1-bits in the value is odd, 0 otherwise
- template <class T>
- unsigned int Parity(T value)
- {
- for (unsigned int i=8*sizeof(value)/2; i>0; i/=2)
- value ^= value >> i;
- return (unsigned int)value&1;
- }
- /// \brief Returns the number of 8-bit bytes or octets required for a value
- /// \tparam T class or type
- /// \param value the value to test
- /// \return the minimum number of 8-bit bytes or octets required to represent a value
- template <class T>
- unsigned int BytePrecision(const T &value)
- {
- if (!value)
- return 0;
- unsigned int l=0, h=8*sizeof(value);
- while (h-l > 8)
- {
- unsigned int t = (l+h)/2;
- if (value >> t)
- l = t;
- else
- h = t;
- }
- return h/8;
- }
- /// \brief Returns the number of bits required for a value
- /// \tparam T class or type
- /// \param value the value to test
- /// \return the maximum number of bits required to represent a value.
- template <class T>
- unsigned int BitPrecision(const T &value)
- {
- if (!value)
- return 0;
- unsigned int l=0, h=8*sizeof(value);
- while (h-l > 1)
- {
- unsigned int t = (l+h)/2;
- if (value >> t)
- l = t;
- else
- h = t;
- }
- return h;
- }
- /// Determines the number of trailing 0-bits in a value
- /// \param v the 32-bit value to test
- /// \return the number of trailing 0-bits in v, starting at the least significant bit position
- /// \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least
- /// significant bit position. The return value is undefined if there are no 1-bits set in the value v.
- /// \note The function does not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position.
- inline unsigned int TrailingZeros(word32 v)
- {
- // GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors
- // We don't enable for Microsoft because it requires a runtime check.
- // http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx
- CRYPTOPP_ASSERT(v != 0);
- #if defined(__BMI__)
- return (unsigned int)_tzcnt_u32(v);
- #elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400)
- return (unsigned int)__builtin_ctz(v);
- #elif defined(_MSC_VER) && (_MSC_VER >= 1400)
- unsigned long result;
- _BitScanForward(&result, v);
- return static_cast<unsigned int>(result);
- #else
- // from http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightMultLookup
- static const int MultiplyDeBruijnBitPosition[32] =
- {
- 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
- 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
- };
- return MultiplyDeBruijnBitPosition[((word32)((v & -v) * 0x077CB531U)) >> 27];
- #endif
- }
- /// Determines the number of trailing 0-bits in a value
- /// \param v the 64-bit value to test
- /// \return the number of trailing 0-bits in v, starting at the least significant bit position
- /// \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least
- /// significant bit position. The return value is undefined if there are no 1-bits set in the value v.
- /// \note The function does not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position.
- inline unsigned int TrailingZeros(word64 v)
- {
- // GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors
- // We don't enable for Microsoft because it requires a runtime check.
- // http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx
- CRYPTOPP_ASSERT(v != 0);
- #if defined(__BMI__) && defined(__x86_64__)
- return (unsigned int)_tzcnt_u64(v);
- #elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400)
- return (unsigned int)__builtin_ctzll(v);
- #elif defined(_MSC_VER) && (_MSC_VER >= 1400) && (defined(_M_X64) || defined(_M_IA64))
- unsigned long result;
- _BitScanForward64(&result, v);
- return static_cast<unsigned int>(result);
- #else
- return word32(v) ? TrailingZeros(word32(v)) : 32 + TrailingZeros(word32(v>>32));
- #endif
- }
- /// \brief Truncates the value to the specified number of bits.
- /// \tparam T class or type
- /// \param value the value to truncate or mask
- /// \param bits the number of bits to truncate or mask
- /// \return the value truncated to the specified number of bits, starting at the least
- /// significant bit position
- /// \details This function masks the low-order bits of value and returns the result. The
- /// mask is created with <tt>(1 << bits) - 1</tt>.
- template <class T>
- inline T Crop(T value, size_t bits)
- {
- if (bits < 8*sizeof(value))
- return T(value & ((T(1) << bits) - 1));
- else
- return value;
- }
- /// \brief Returns the number of 8-bit bytes or octets required for the specified number of bits
- /// \param bitCount the number of bits
- /// \return the minimum number of 8-bit bytes or octets required by bitCount
- /// \details BitsToBytes is effectively a ceiling function based on 8-bit bytes.
- inline size_t BitsToBytes(size_t bitCount)
- {
- return ((bitCount+7)/(8));
- }
- /// \brief Returns the number of words required for the specified number of bytes
- /// \param byteCount the number of bytes
- /// \return the minimum number of words required by byteCount
- /// \details BytesToWords is effectively a ceiling function based on <tt>WORD_SIZE</tt>.
- /// <tt>WORD_SIZE</tt> is defined in config.h
- inline size_t BytesToWords(size_t byteCount)
- {
- return ((byteCount+WORD_SIZE-1)/WORD_SIZE);
- }
- /// \brief Returns the number of words required for the specified number of bits
- /// \param bitCount the number of bits
- /// \return the minimum number of words required by bitCount
- /// \details BitsToWords is effectively a ceiling function based on <tt>WORD_BITS</tt>.
- /// <tt>WORD_BITS</tt> is defined in config.h
- inline size_t BitsToWords(size_t bitCount)
- {
- return ((bitCount+WORD_BITS-1)/(WORD_BITS));
- }
- /// \brief Returns the number of double words required for the specified number of bits
- /// \param bitCount the number of bits
- /// \return the minimum number of double words required by bitCount
- /// \details BitsToDwords is effectively a ceiling function based on <tt>2*WORD_BITS</tt>.
- /// <tt>WORD_BITS</tt> is defined in config.h
- inline size_t BitsToDwords(size_t bitCount)
- {
- return ((bitCount+2*WORD_BITS-1)/(2*WORD_BITS));
- }
- /// Performs an XOR of a buffer with a mask
- /// \param buf the buffer to XOR with the mask
- /// \param mask the mask to XOR with the buffer
- /// \param count the size of the buffers, in bytes
- /// \details The function effectively visits each element in the buffers and performs
- /// <tt>buf[i] ^= mask[i]</tt>. buf and mask must be of equal size.
- CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *buf, const byte *mask, size_t count);
- /// Performs an XOR of an input buffer with a mask and stores the result in an output buffer
- /// \param output the destination buffer
- /// \param input the source buffer to XOR with the mask
- /// \param mask the mask buffer to XOR with the input buffer
- /// \param count the size of the buffers, in bytes
- /// \details The function effectively visits each element in the buffers and performs
- /// <tt>output[i] = input[i] ^ mask[i]</tt>. output, input and mask must be of equal size.
- CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *output, const byte *input, const byte *mask, size_t count);
- /// \brief Performs a near constant-time comparison of two equally sized buffers
- /// \param buf1 the first buffer
- /// \param buf2 the second buffer
- /// \param count the size of the buffers, in bytes
- /// \details VerifyBufsEqual performs an XOR of the elements in two equally sized
- /// buffers and returns a result based on the XOR operation. A count of 0 returns
- /// true because two empty buffers are considered equal.
- /// \details The function is near constant-time because CPU micro-code timings could
- /// affect the "constant-ness". Calling code is responsible for mitigating timing
- /// attacks if the buffers are not equally sized.
- /// \sa ModPowerOf2
- CRYPTOPP_DLL bool CRYPTOPP_API VerifyBufsEqual(const byte *buf1, const byte *buf2, size_t count);
- /// \brief Tests whether a value is a power of 2
- /// \param value the value to test
- /// \return true if value is a power of 2, false otherwise
- /// \details The function creates a mask of <tt>value - 1</tt> and returns the result
- /// of an AND operation compared to 0. If value is 0 or less than 0, then the function
- /// returns false.
- template <class T>
- inline bool IsPowerOf2(const T &value)
- {
- return value > 0 && (value & (value-1)) == 0;
- }
- #if defined(__BMI__)
- template <>
- inline bool IsPowerOf2<word32>(const word32 &value)
- {
- return value > 0 && _blsr_u32(value) == 0;
- }
- # if defined(__x86_64__)
- template <>
- inline bool IsPowerOf2<word64>(const word64 &value)
- {
- return value > 0 && _blsr_u64(value) == 0;
- }
- # endif // __x86_64__
- #endif // __BMI__
- /// \brief Provide the minimum value for a type
- /// \tparam T type of class
- /// \return the minimum value of the type or class
- /// \details NumericLimitsMin() was introduced for Clang at <A
- /// HREF="http://github.com/weidai11/cryptopp/issues/364">Issue 364,
- /// Apple Clang 6.0 and numeric_limits<word128>::max() returns 0</A>.
- /// \details NumericLimitsMin() requires a specialization for <tt>T</tt>,
- /// meaning <tt>std::numeric_limits<T>::is_specialized</tt> must return
- /// <tt>true</tt>. In the case of <tt>word128</tt> Clang did not specialize
- /// <tt>numeric_limits</tt> for the type.
- /// \since Crypto++ 8.1
- template<class T>
- inline T NumericLimitsMin()
- {
- CRYPTOPP_ASSERT(std::numeric_limits<T>::is_specialized);
- return (std::numeric_limits<T>::min)();
- }
- /// \brief Provide the maximum value for a type
- /// \tparam T type of class
- /// \return the maximum value of the type or class
- /// \details NumericLimitsMax() was introduced for Clang at <A
- /// HREF="http://github.com/weidai11/cryptopp/issues/364">Issue 364,
- /// Apple Clang 6.0 and numeric_limits<word128>::max() returns 0</A>.
- /// \details NumericLimitsMax() requires a specialization for <tt>T</tt>,
- /// meaning <tt>std::numeric_limits<T>::is_specialized</tt> must return
- /// <tt>true</tt>. In the case of <tt>word128</tt> Clang did not specialize
- /// <tt>numeric_limits</tt> for the type.
- /// \since Crypto++ 8.1
- template<class T>
- inline T NumericLimitsMax()
- {
- CRYPTOPP_ASSERT(std::numeric_limits<T>::is_specialized);
- return (std::numeric_limits<T>::max)();
- }
- // NumericLimitsMin and NumericLimitsMax added for word128 types,
- // see http://github.com/weidai11/cryptopp/issues/364
- #if defined(CRYPTOPP_WORD128_AVAILABLE)
- template<>
- inline word128 NumericLimitsMin()
- {
- return 0;
- }
- template<>
- inline word128 NumericLimitsMax()
- {
- return (static_cast<word128>(LWORD_MAX) << 64U) | LWORD_MAX;
- }
- #endif
- /// \brief Performs a saturating subtract clamped at 0
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param a the minuend
- /// \param b the subtrahend
- /// \return the difference produced by the saturating subtract
- /// \details Saturating arithmetic restricts results to a fixed range. Results that are
- /// less than 0 are clamped at 0.
- /// \details Use of saturating arithmetic in places can be advantageous because it can
- /// avoid a branch by using an instruction like a conditional move (<tt>CMOVE</tt>).
- template <class T1, class T2>
- inline T1 SaturatingSubtract(const T1 &a, const T2 &b)
- {
- // Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html
- return T1((a > b) ? (a - b) : 0);
- }
- /// \brief Performs a saturating subtract clamped at 1
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param a the minuend
- /// \param b the subtrahend
- /// \return the difference produced by the saturating subtract
- /// \details Saturating arithmetic restricts results to a fixed range. Results that are
- /// less than 1 are clamped at 1.
- /// \details Use of saturating arithmetic in places can be advantageous because it can
- /// avoid a branch by using an instruction like a conditional move (<tt>CMOVE</tt>).
- template <class T1, class T2>
- inline T1 SaturatingSubtract1(const T1 &a, const T2 &b)
- {
- // Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html
- return T1((a > b) ? (a - b) : 1);
- }
- /// \brief Reduces a value to a power of 2
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param a the first value
- /// \param b the second value
- /// \return ModPowerOf2() returns <tt>a & (b-1)</tt>. <tt>b</tt> must be a power of 2.
- /// Use IsPowerOf2() to determine if <tt>b</tt> is a suitable candidate.
- /// \sa IsPowerOf2
- template <class T1, class T2>
- inline T2 ModPowerOf2(const T1 &a, const T2 &b)
- {
- CRYPTOPP_ASSERT(IsPowerOf2(b));
- // Coverity finding CID 170383 Overflowed return value (INTEGER_OVERFLOW)
- // Visual Studio and /RTCc warning, https://docs.microsoft.com/en-us/cpp/build/reference/rtc-run-time-error-checks
- return T2(a & SaturatingSubtract(b,1U));
- }
- /// \brief Rounds a value down to a multiple of a second value
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param n the value to reduce
- /// \param m the value to reduce <tt>n</tt> to a multiple
- /// \return the possibly unmodified value \n
- /// \details RoundDownToMultipleOf is effectively a floor function based on m. The function returns
- /// the value <tt>n - n\%m</tt>. If n is a multiple of m, then the original value is returned.
- /// \note <tt>T1</tt> and <tt>T2</tt> should be unsigned arithmetic types. If <tt>T1</tt> or
- /// <tt>T2</tt> is signed, then the value should be non-negative. The library asserts in
- /// debug builds when practical, but allows you to perform the operation in release builds.
- template <class T1, class T2>
- inline T1 RoundDownToMultipleOf(const T1 &n, const T2 &m)
- {
- // http://github.com/weidai11/cryptopp/issues/364
- #if !defined(CRYPTOPP_APPLE_CLANG_VERSION) || (CRYPTOPP_APPLE_CLANG_VERSION >= 80000)
- CRYPTOPP_ASSERT(std::numeric_limits<T1>::is_integer);
- CRYPTOPP_ASSERT(std::numeric_limits<T2>::is_integer);
- #endif
- CRYPTOPP_ASSERT(!std::numeric_limits<T1>::is_signed || n > 0);
- CRYPTOPP_ASSERT(!std::numeric_limits<T2>::is_signed || m > 0);
- if (IsPowerOf2(m))
- return n - ModPowerOf2(n, m);
- else
- return n - n%m;
- }
- /// \brief Rounds a value up to a multiple of a second value
- /// \tparam T1 class or type
- /// \tparam T2 class or type
- /// \param n the value to reduce
- /// \param m the value to reduce <tt>n</tt> to a multiple
- /// \return the possibly unmodified value \n
- /// \details RoundUpToMultipleOf is effectively a ceiling function based on m. The function
- /// returns the value <tt>n + n\%m</tt>. If n is a multiple of m, then the original value is
- /// returned. If the value n would overflow, then an InvalidArgument exception is thrown.
- /// \note <tt>T1</tt> and <tt>T2</tt> should be unsigned arithmetic types. If <tt>T1</tt> or
- /// <tt>T2</tt> is signed, then the value should be non-negative. The library asserts in
- /// debug builds when practical, but allows you to perform the operation in release builds.
- template <class T1, class T2>
- inline T1 RoundUpToMultipleOf(const T1 &n, const T2 &m)
- {
- // http://github.com/weidai11/cryptopp/issues/364
- #if !defined(CRYPTOPP_APPLE_CLANG_VERSION) || (CRYPTOPP_APPLE_CLANG_VERSION >= 80000)
- CRYPTOPP_ASSERT(std::numeric_limits<T1>::is_integer);
- CRYPTOPP_ASSERT(std::numeric_limits<T2>::is_integer);
- #endif
- CRYPTOPP_ASSERT(!std::numeric_limits<T1>::is_signed || n > 0);
- CRYPTOPP_ASSERT(!std::numeric_limits<T2>::is_signed || m > 0);
- if (NumericLimitsMax<T1>() - m + 1 < n)
- throw InvalidArgument("RoundUpToMultipleOf: integer overflow");
- return RoundDownToMultipleOf(T1(n+m-1), m);
- }
- /// \brief Returns the minimum alignment requirements of a type
- /// \tparam T class or type
- /// \return the minimum alignment requirements of <tt>T</tt>, in bytes
- /// \details Internally the function calls C++11's <tt>alignof</tt> if
- /// available. If not available, then the function uses compiler
- /// specific extensions such as <tt>__alignof</tt> and <tt>_alignof_</tt>.
- /// If an extension is not available, then the function uses
- /// <tt>sizeof(T)</tt>.
- template <class T>
- inline unsigned int GetAlignmentOf()
- {
- #if defined(CRYPTOPP_CXX11_ALIGNOF)
- return alignof(T);
- #elif (_MSC_VER >= 1300)
- return __alignof(T);
- #elif defined(__GNUC__)
- return __alignof__(T);
- #elif defined(__SUNPRO_CC)
- return __alignof__(T);
- #elif defined(__IBM_ALIGNOF__)
- return __alignof__(T);
- #elif CRYPTOPP_BOOL_SLOW_WORD64
- return UnsignedMin(4U, sizeof(T));
- #else
- return sizeof(T);
- #endif
- }
- /// \brief Determines whether ptr is aligned to a minimum value
- /// \param ptr the pointer being checked for alignment
- /// \param alignment the alignment value to test the pointer against
- /// \return true if <tt>ptr</tt> is aligned on at least <tt>alignment</tt>
- /// boundary, false otherwise
- /// \details Internally the function tests whether alignment is 1. If so,
- /// the function returns true. If not, then the function effectively
- /// performs a modular reduction and returns true if the residue is 0.
- inline bool IsAlignedOn(const void *ptr, unsigned int alignment)
- {
- const uintptr_t x = reinterpret_cast<uintptr_t>(ptr);
- return alignment==1 || (IsPowerOf2(alignment) ? ModPowerOf2(x, alignment) == 0 : x % alignment == 0);
- }
- /// \brief Determines whether ptr is minimally aligned
- /// \tparam T class or type
- /// \param ptr the pointer to check for alignment
- /// \return true if <tt>ptr</tt> is aligned to at least <tt>T</tt>
- /// boundary, false otherwise
- /// \details Internally the function calls IsAlignedOn with a second
- /// parameter of GetAlignmentOf<T>.
- template <class T>
- inline bool IsAligned(const void *ptr)
- {
- return IsAlignedOn(ptr, GetAlignmentOf<T>());
- }
- #if (CRYPTOPP_LITTLE_ENDIAN)
- typedef LittleEndian NativeByteOrder;
- #elif (CRYPTOPP_BIG_ENDIAN)
- typedef BigEndian NativeByteOrder;
- #else
- # error "Unable to determine endianness"
- #endif
- /// \brief Returns NativeByteOrder as an enumerated ByteOrder value
- /// \return LittleEndian if the native byte order is little-endian,
- /// and BigEndian if the native byte order is big-endian
- /// \details NativeByteOrder is a typedef depending on the platform.
- /// If CRYPTOPP_LITTLE_ENDIAN is set in config.h, then
- /// GetNativeByteOrder returns LittleEndian. If CRYPTOPP_BIG_ENDIAN
- /// is set, then GetNativeByteOrder returns BigEndian.
- /// \note There are other byte orders besides little- and big-endian,
- /// and they include bi-endian and PDP-endian. If a system is neither
- /// little-endian nor big-endian, then a compile time error occurs.
- inline ByteOrder GetNativeByteOrder()
- {
- return NativeByteOrder::ToEnum();
- }
- /// \brief Determines whether order follows native byte ordering
- /// \param order the ordering being tested against native byte ordering
- /// \return true if order follows native byte ordering, false otherwise
- inline bool NativeByteOrderIs(ByteOrder order)
- {
- return order == GetNativeByteOrder();
- }
- /// \brief Returns the direction the cipher is being operated
- /// \tparam T class or type
- /// \param obj the cipher object being queried
- /// \return ENCRYPTION if the cipher obj is being operated in its forward direction,
- /// DECRYPTION otherwise
- /// \details A cipher can be operated in a "forward" direction (encryption) or a "reverse"
- /// direction (decryption). The operations do not have to be symmetric, meaning a second
- /// application of the transformation does not necessarily return the original message.
- /// That is, <tt>E(D(m))</tt> may not equal <tt>E(E(m))</tt>; and <tt>D(E(m))</tt> may not
- /// equal <tt>D(D(m))</tt>.
- template <class T>
- inline CipherDir GetCipherDir(const T &obj)
- {
- return obj.IsForwardTransformation() ? ENCRYPTION : DECRYPTION;
- }
- /// \brief Performs an addition with carry on a block of bytes
- /// \param inout the byte block
- /// \param size the size of the block, in bytes
- /// \details Performs an addition with carry by adding 1 on a block of bytes starting at the least
- /// significant byte. Once carry is 0, the function terminates and returns to the caller.
- /// \note The function is not constant time because it stops processing when the carry is 0.
- inline void IncrementCounterByOne(byte *inout, unsigned int size)
- {
- CRYPTOPP_ASSERT(inout != NULLPTR);
- unsigned int carry=1;
- while (carry && size != 0)
- {
- // On carry inout[n] equals 0
- carry = ! ++inout[size-1];
- size--;
- }
- }
- /// \brief Performs an addition with carry on a block of bytes
- /// \param output the destination block of bytes
- /// \param input the source block of bytes
- /// \param size the size of the block
- /// \details Performs an addition with carry on a block of bytes starting at the least significant
- /// byte. Once carry is 0, the remaining bytes from input are copied to output using memcpy.
- /// \details The function is close to near-constant time because it operates on all the bytes in the blocks.
- inline void IncrementCounterByOne(byte *output, const byte *input, unsigned int size)
- {
- CRYPTOPP_ASSERT(output != NULLPTR);
- CRYPTOPP_ASSERT(input != NULLPTR);
- unsigned int carry=1;
- while (carry && size != 0)
- {
- // On carry output[n] equals 0
- carry = ! (output[size-1] = input[size-1] + 1);
- size--;
- }
- while (size != 0)
- {
- output[size-1] = input[size-1];
- size--;
- }
- }
- /// \brief Performs a branch-less swap of values a and b if condition c is true
- /// \tparam T class or type
- /// \param c the condition to perform the swap
- /// \param a the first value
- /// \param b the second value
- template <class T>
- inline void ConditionalSwap(bool c, T &a, T &b)
- {
- T t = c * (a ^ b);
- a ^= t;
- b ^= t;
- }
- /// \brief Performs a branch-less swap of pointers a and b if condition c is true
- /// \tparam T class or type
- /// \param c the condition to perform the swap
- /// \param a the first pointer
- /// \param b the second pointer
- template <class T>
- inline void ConditionalSwapPointers(bool c, T &a, T &b)
- {
- ptrdiff_t t = size_t(c) * (a - b);
- a -= t;
- b += t;
- }
- // see http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/protect-secrets.html
- // and http://www.securecoding.cert.org/confluence/display/cplusplus/MSC06-CPP.+Be+aware+of+compiler+optimization+when+dealing+with+sensitive+data
- /// \brief Sets each element of an array to 0
- /// \tparam T class or type
- /// \param buf an array of elements
- /// \param n the number of elements in the array
- /// \details The operation performs a wipe or zeroization. The function
- /// attempts to survive optimizations and dead code removal.
- template <class T>
- void SecureWipeBuffer(T *buf, size_t n)
- {
- // GCC 4.3.2 on Cygwin optimizes away the first store if this
- // loop is done in the forward direction
- volatile T *p = buf+n;
- while (n--)
- *(--p) = 0;
- }
- #if !defined(CRYPTOPP_DISABLE_ASM) && \
- (_MSC_VER >= 1400 || defined(__GNUC__)) && \
- (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86)
- /// \brief Sets each byte of an array to 0
- /// \param buf an array of bytes
- /// \param n the number of elements in the array
- /// \details The operation performs a wipe or zeroization. The function
- /// attempts to survive optimizations and dead code removal.
- template<> inline void SecureWipeBuffer(byte *buf, size_t n)
- {
- volatile byte *p = buf;
- #ifdef __GNUC__
- asm volatile("rep stosb" : "+c"(n), "+D"(p) : "a"(0) : "memory");
- #else
- __stosb(reinterpret_cast<byte *>(reinterpret_cast<size_t>(p)), 0, n);
- #endif
- }
- /// \brief Sets each 16-bit element of an array to 0
- /// \param buf an array of 16-bit words
- /// \param n the number of elements in the array
- /// \details The operation performs a wipe or zeroization. The function
- /// attempts to survive optimizations and dead code removal.
- template<> inline void SecureWipeBuffer(word16 *buf, size_t n)
- {
- volatile word16 *p = buf;
- #ifdef __GNUC__
- asm volatile("rep stosw" : "+c"(n), "+D"(p) : "a"(0) : "memory");
- #else
- __stosw(reinterpret_cast<word16 *>(reinterpret_cast<size_t>(p)), 0, n);
- #endif
- }
- /// \brief Sets each 32-bit element of an array to 0
- /// \param buf an array of 32-bit words
- /// \param n the number of elements in the array
- /// \details The operation performs a wipe or zeroization. The function
- /// attempts to survive optimizations and dead code removal.
- template<> inline void SecureWipeBuffer(word32 *buf, size_t n)
- {
- volatile word32 *p = buf;
- #ifdef __GNUC__
- asm volatile("rep stosl" : "+c"(n), "+D"(p) : "a"(0) : "memory");
- #else
- __stosd(reinterpret_cast<unsigned long *>(reinterpret_cast<size_t>(p)), 0, n);
- #endif
- }
- /// \brief Sets each 64-bit element of an array to 0
- /// \param buf an array of 64-bit words
- /// \param n the number of elements in the array
- /// \details The operation performs a wipe or zeroization. The function
- /// attempts to survive optimizations and dead code removal.
- template<> inline void SecureWipeBuffer(word64 *buf, size_t n)
- {
- #if CRYPTOPP_BOOL_X64
- volatile word64 *p = buf;
- # ifdef __GNUC__
- asm volatile("rep stosq" : "+c"(n), "+D"(p) : "a"(0) : "memory");
- # else
- __stosq(const_cast<word64 *>(p), 0, n);
- # endif
- #else
- SecureWipeBuffer(reinterpret_cast<word32 *>(buf), 2*n);
- #endif
- }
- #endif // CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86
- #if !defined(CRYPTOPP_DISABLE_ASM) && (_MSC_VER >= 1700) && defined(_M_ARM)
- template<> inline void SecureWipeBuffer(byte *buf, size_t n)
- {
- char *p = reinterpret_cast<char*>(buf+n);
- while (n--)
- __iso_volatile_store8(--p, 0);
- }
- template<> inline void SecureWipeBuffer(word16 *buf, size_t n)
- {
- short *p = reinterpret_cast<short*>(buf+n);
- while (n--)
- __iso_volatile_store16(--p, 0);
- }
- template<> inline void SecureWipeBuffer(word32 *buf, size_t n)
- {
- int *p = reinterpret_cast<int*>(buf+n);
- while (n--)
- __iso_volatile_store32(--p, 0);
- }
- template<> inline void SecureWipeBuffer(word64 *buf, size_t n)
- {
- __int64 *p = reinterpret_cast<__int64*>(buf+n);
- while (n--)
- __iso_volatile_store64(--p, 0);
- }
- #endif
- /// \brief Sets each element of an array to 0
- /// \tparam T class or type
- /// \param buf an array of elements
- /// \param n the number of elements in the array
- /// \details The operation performs a wipe or zeroization. The function
- /// attempts to survive optimizations and dead code removal.
- template <class T>
- inline void SecureWipeArray(T *buf, size_t n)
- {
- if (sizeof(T) % 8 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word64>() == 0)
- SecureWipeBuffer(reinterpret_cast<word64 *>(static_cast<void *>(buf)), n * (sizeof(T)/8));
- else if (sizeof(T) % 4 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word32>() == 0)
- SecureWipeBuffer(reinterpret_cast<word32 *>(static_cast<void *>(buf)), n * (sizeof(T)/4));
- else if (sizeof(T) % 2 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word16>() == 0)
- SecureWipeBuffer(reinterpret_cast<word16 *>(static_cast<void *>(buf)), n * (sizeof(T)/2));
- else
- SecureWipeBuffer(reinterpret_cast<byte *>(static_cast<void *>(buf)), n * sizeof(T));
- }
- /// \brief Converts a wide character C-string to a multibyte string
- /// \param str C-string consisting of wide characters
- /// \param throwOnError flag indicating the function should throw on error
- /// \return str converted to a multibyte string or an empty string.
- /// \details StringNarrow() converts a wide string to a narrow string using C++ std::wcstombs() under
- /// the executing thread's locale. A locale must be set before using this function, and it can be
- /// set with std::setlocale() if needed. Upon success, the converted string is returned.
- /// \details Upon failure with throwOnError as false, the function returns an empty string. If
- /// throwOnError as true, the function throws an InvalidArgument() exception.
- /// \note If you try to convert, say, the Chinese character for "bone" from UTF-16 (0x9AA8) to UTF-8
- /// (0xE9 0xAA 0xA8), then you must ensure the locale is available. If the locale is not available,
- /// then a 0x21 error is returned on Windows which eventually results in an InvalidArgument() exception.
- std::string StringNarrow(const wchar_t *str, bool throwOnError = true);
- /// \brief Converts a multibyte C-string to a wide character string
- /// \param str C-string consisting of wide characters
- /// \param throwOnError flag indicating the function should throw on error
- /// \return str converted to a multibyte string or an empty string.
- /// \details StringWiden() converts a narrow string to a wide string using C++ std::mbstowcs() under
- /// the executing thread's locale. A locale must be set before using this function, and it can be
- /// set with std::setlocale() if needed. Upon success, the converted string is returned.
- /// \details Upon failure with throwOnError as false, the function returns an empty string. If
- /// throwOnError as true, the function throws an InvalidArgument() exception.
- /// \note If you try to convert, say, the Chinese character for "bone" from UTF-8 (0xE9 0xAA 0xA8)
- /// to UTF-16 (0x9AA8), then you must ensure the locale is available. If the locale is not available,
- /// then a 0x21 error is returned on Windows which eventually results in an InvalidArgument() exception.
- std::wstring StringWiden(const char *str, bool throwOnError = true);
- // ************** rotate functions ***************
- /// \brief Performs a left rotate
- /// \tparam R the number of bit positions to rotate the value
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details R must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// Use rotlMod if the rotate amount R is outside the range.
- /// \details Use rotlConstant when the rotate amount is constant. The template function was added
- /// because Clang did not propagate the constant when passed as a function parameter. Clang's
- /// need for a constexpr meant rotlFixed failed to compile on occasion.
- /// \note rotlConstant attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
- /// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
- /// counterparts.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 6.0
- template <unsigned int R, class T> inline T rotlConstant(T x)
- {
- // Portable rotate that reduces to single instruction...
- // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
- // http://software.intel.com/en-us/forums/topic/580884
- // and http://llvm.org/bugs/show_bug.cgi?id=24226
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- CRYPTOPP_ASSERT(static_cast<int>(R) < THIS_SIZE);
- return T((x<<R)|(x>>(-R&MASK)));
- }
- /// \brief Performs a right rotate
- /// \tparam R the number of bit positions to rotate the value
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details R must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// Use rotrMod if the rotate amount R is outside the range.
- /// \details Use rotrConstant when the rotate amount is constant. The template function was added
- /// because Clang did not propagate the constant when passed as a function parameter. Clang's
- /// need for a constexpr meant rotrFixed failed to compile on occasion.
- /// \note rotrConstant attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
- /// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
- /// counterparts.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- template <unsigned int R, class T> inline T rotrConstant(T x)
- {
- // Portable rotate that reduces to single instruction...
- // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
- // http://software.intel.com/en-us/forums/topic/580884
- // and http://llvm.org/bugs/show_bug.cgi?id=24226
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- CRYPTOPP_ASSERT(static_cast<int>(R) < THIS_SIZE);
- return T((x >> R)|(x<<(-R&MASK)));
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// Use rotlMod if the rotate amount y is outside the range.
- /// \note rotlFixed attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
- /// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
- /// counterparts. New code should use <tt>rotlConstant</tt>, which accepts the rotate amount as a
- /// template parameter.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 6.0
- template <class T> inline T rotlFixed(T x, unsigned int y)
- {
- // Portable rotate that reduces to single instruction...
- // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
- // http://software.intel.com/en-us/forums/topic/580884
- // and http://llvm.org/bugs/show_bug.cgi?id=24226
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- CRYPTOPP_ASSERT(static_cast<int>(y) < THIS_SIZE);
- return T((x<<y)|(x>>(-y&MASK)));
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// Use rotrMod if the rotate amount y is outside the range.
- /// \note rotrFixed attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
- /// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
- /// counterparts. New code should use <tt>rotrConstant</tt>, which accepts the rotate amount as a
- /// template parameter.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 3.0
- template <class T> inline T rotrFixed(T x, unsigned int y)
- {
- // Portable rotate that reduces to single instruction...
- // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
- // http://software.intel.com/en-us/forums/topic/580884
- // and http://llvm.org/bugs/show_bug.cgi?id=24226
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- CRYPTOPP_ASSERT(static_cast<int>(y) < THIS_SIZE);
- return T((x >> y)|(x<<(-y&MASK)));
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// Use rotlMod if the rotate amount y is outside the range.
- /// \note rotlVariable attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
- /// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
- /// counterparts.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 3.0
- template <class T> inline T rotlVariable(T x, unsigned int y)
- {
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- CRYPTOPP_ASSERT(static_cast<int>(y) < THIS_SIZE);
- return T((x<<y)|(x>>(-y&MASK)));
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// Use rotrMod if the rotate amount y is outside the range.
- /// \note rotrVariable attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
- /// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
- /// counterparts.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 3.0
- template <class T> inline T rotrVariable(T x, unsigned int y)
- {
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- CRYPTOPP_ASSERT(static_cast<int>(y) < THIS_SIZE);
- return T((x>>y)|(x<<(-y&MASK)));
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details y is reduced to the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrVariable will use either <tt>rotate IMM</tt> or <tt>rotate REG</tt>.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 3.0
- template <class T> inline T rotlMod(T x, unsigned int y)
- {
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- return T((x<<(y&MASK))|(x>>(-y&MASK)));
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
- /// \details y is reduced to the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrVariable will use either <tt>rotate IMM</tt> or <tt>rotate REG</tt>.
- /// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
- /// \since Crypto++ 3.0
- template <class T> inline T rotrMod(T x, unsigned int y)
- {
- CRYPTOPP_CONSTANT(THIS_SIZE = sizeof(T)*8);
- CRYPTOPP_CONSTANT(MASK = THIS_SIZE-1);
- return T((x>>(y&MASK))|(x<<(-y&MASK)));
- }
- #ifdef _MSC_VER
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the 32-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotlFixed will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y)
- {
- // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _lrotl(x, static_cast<byte>(y)) : x;
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the 32-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrFixed will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y)
- {
- // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _lrotr(x, static_cast<byte>(y)) : x;
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the 32-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotlVariable will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return _lrotl(x, static_cast<byte>(y));
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the 32-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrVariable will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return _lrotr(x, static_cast<byte>(y));
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the 32-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \since Crypto++ 3.0
- template<> inline word32 rotlMod<word32>(word32 x, unsigned int y)
- {
- y %= 8*sizeof(x);
- return _lrotl(x, static_cast<byte>(y));
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the 32-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \since Crypto++ 3.0
- template<> inline word32 rotrMod<word32>(word32 x, unsigned int y)
- {
- y %= 8*sizeof(x);
- return _lrotr(x, static_cast<byte>(y));
- }
- #endif // #ifdef _MSC_VER
- #if (_MSC_VER >= 1400) || (defined(_MSC_VER) && !defined(_DLL))
- // Intel C++ Compiler 10.0 calls a function instead of using the rotate instruction when using these instructions
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the 64-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrFixed will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word64 rotlFixed<word64>(word64 x, unsigned int y)
- {
- // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _rotl64(x, static_cast<byte>(y)) : x;
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the 64-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrFixed will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word64 rotrFixed<word64>(word64 x, unsigned int y)
- {
- // Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _rotr64(x, static_cast<byte>(y)) : x;
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the 64-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotlVariable will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word64 rotlVariable<word64>(word64 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return _rotl64(x, static_cast<byte>(y));
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the 64-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \note rotrVariable will assert in Debug builds if is outside the allowed range.
- /// \since Crypto++ 3.0
- template<> inline word64 rotrVariable<word64>(word64 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _rotr64(x, static_cast<byte>(y)) : x;
- }
- /// \brief Performs a left rotate
- /// \tparam T the word type
- /// \param x the 64-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \since Crypto++ 3.0
- template<> inline word64 rotlMod<word64>(word64 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _rotl64(x, static_cast<byte>(y)) : x;
- }
- /// \brief Performs a right rotate
- /// \tparam T the word type
- /// \param x the 64-bit value to rotate
- /// \param y the number of bit positions to rotate the value
- /// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
- /// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
- /// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
- /// \since Crypto++ 3.0
- template<> inline word64 rotrMod<word64>(word64 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 8*sizeof(x));
- return y ? _rotr64(x, static_cast<byte>(y)) : x;
- }
- #endif // #if _MSC_VER >= 1310
- #if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER)
- // Intel C++ Compiler 10.0 gives undefined externals with these
- template<> inline word16 rotlFixed<word16>(word16 x, unsigned int y)
- {
- // Intrinsic, not bound to C/C++ language rules.
- return _rotl16(x, static_cast<byte>(y));
- }
- template<> inline word16 rotrFixed<word16>(word16 x, unsigned int y)
- {
- // Intrinsic, not bound to C/C++ language rules.
- return _rotr16(x, static_cast<byte>(y));
- }
- template<> inline word16 rotlVariable<word16>(word16 x, unsigned int y)
- {
- return _rotl16(x, static_cast<byte>(y));
- }
- template<> inline word16 rotrVariable<word16>(word16 x, unsigned int y)
- {
- return _rotr16(x, static_cast<byte>(y));
- }
- template<> inline word16 rotlMod<word16>(word16 x, unsigned int y)
- {
- return _rotl16(x, static_cast<byte>(y));
- }
- template<> inline word16 rotrMod<word16>(word16 x, unsigned int y)
- {
- return _rotr16(x, static_cast<byte>(y));
- }
- template<> inline byte rotlFixed<byte>(byte x, unsigned int y)
- {
- // Intrinsic, not bound to C/C++ language rules.
- return _rotl8(x, static_cast<byte>(y));
- }
- template<> inline byte rotrFixed<byte>(byte x, unsigned int y)
- {
- // Intrinsic, not bound to C/C++ language rules.
- return _rotr8(x, static_cast<byte>(y));
- }
- template<> inline byte rotlVariable<byte>(byte x, unsigned int y)
- {
- return _rotl8(x, static_cast<byte>(y));
- }
- template<> inline byte rotrVariable<byte>(byte x, unsigned int y)
- {
- return _rotr8(x, static_cast<byte>(y));
- }
- template<> inline byte rotlMod<byte>(byte x, unsigned int y)
- {
- return _rotl8(x, static_cast<byte>(y));
- }
- template<> inline byte rotrMod<byte>(byte x, unsigned int y)
- {
- return _rotr8(x, static_cast<byte>(y));
- }
- #endif // #if _MSC_VER >= 1400
- #if (defined(__MWERKS__) && TARGET_CPU_PPC)
- template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 32);
- return y ? __rlwinm(x,y,0,31) : x;
- }
- template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 32);
- return y ? __rlwinm(x,32-y,0,31) : x;
- }
- template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 32);
- return (__rlwnm(x,y,0,31));
- }
- template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y)
- {
- CRYPTOPP_ASSERT(y < 32);
- return (__rlwnm(x,32-y,0,31));
- }
- template<> inline word32 rotlMod<word32>(word32 x, unsigned int y)
- {
- return (__rlwnm(x,y,0,31));
- }
- template<> inline word32 rotrMod<word32>(word32 x, unsigned int y)
- {
- return (__rlwnm(x,32-y,0,31));
- }
- #endif // __MWERKS__ && TARGET_CPU_PPC
- // ************** endian reversal ***************
- /// \brief Gets a byte from a value
- /// \param order the ByteOrder of the value
- /// \param value the value to retrieve the byte
- /// \param index the location of the byte to retrieve
- template <class T>
- inline unsigned int GetByte(ByteOrder order, T value, unsigned int index)
- {
- if (order == LITTLE_ENDIAN_ORDER)
- return GETBYTE(value, index);
- else
- return GETBYTE(value, sizeof(T)-index-1);
- }
- /// \brief Reverses bytes in a 8-bit value
- /// \param value the 8-bit value to reverse
- /// \note ByteReverse returns the value passed to it since there is nothing to
- /// reverse.
- inline byte ByteReverse(byte value)
- {
- return value;
- }
- /// \brief Reverses bytes in a 16-bit value
- /// \param value the 16-bit value to reverse
- /// \details ByteReverse calls bswap if available. Otherwise the function
- /// performs a 8-bit rotate on the word16.
- inline word16 ByteReverse(word16 value)
- {
- #if defined(CRYPTOPP_BYTESWAP_AVAILABLE)
- return bswap_16(value);
- #elif (_MSC_VER >= 1400) || (defined(_MSC_VER) && !defined(_DLL))
- return _byteswap_ushort(value);
- #else
- return rotlFixed(value, 8U);
- #endif
- }
- /// \brief Reverses bytes in a 32-bit value
- /// \param value the 32-bit value to reverse
- /// \details ByteReverse calls bswap if available. Otherwise the function uses
- /// a combination of rotates on the word32.
- inline word32 ByteReverse(word32 value)
- {
- #if defined(CRYPTOPP_BYTESWAP_AVAILABLE)
- return bswap_32(value);
- #elif defined(CRYPTOPP_ARM_BYTEREV_AVAILABLE)
- word32 rvalue;
- __asm__ ("rev %0, %1" : "=r" (rvalue) : "r" (value));
- return rvalue;
- #elif defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE)
- __asm__ ("bswap %0" : "=r" (value) : "0" (value));
- return value;
- #elif defined(__MWERKS__) && TARGET_CPU_PPC
- return (word32)__lwbrx(&value,0);
- #elif (_MSC_VER >= 1400) || (defined(_MSC_VER) && !defined(_DLL))
- return _byteswap_ulong(value);
- #elif CRYPTOPP_FAST_ROTATE(32) && !defined(__xlC__)
- // 5 instructions with rotate instruction, 9 without
- return (rotrFixed(value, 8U) & 0xff00ff00) | (rotlFixed(value, 8U) & 0x00ff00ff);
- #else
- // 6 instructions with rotate instruction, 8 without
- value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8);
- return rotlFixed(value, 16U);
- #endif
- }
- /// \brief Reverses bytes in a 64-bit value
- /// \param value the 64-bit value to reverse
- /// \details ByteReverse calls bswap if available. Otherwise the function uses
- /// a combination of rotates on the word64.
- inline word64 ByteReverse(word64 value)
- {
- #if defined(CRYPTOPP_BYTESWAP_AVAILABLE)
- return bswap_64(value);
- #elif defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) && defined(__x86_64__)
- __asm__ ("bswap %0" : "=r" (value) : "0" (value));
- return value;
- #elif (_MSC_VER >= 1400) || (defined(_MSC_VER) && !defined(_DLL))
- return _byteswap_uint64(value);
- #elif CRYPTOPP_BOOL_SLOW_WORD64
- return (word64(ByteReverse(word32(value))) << 32) | ByteReverse(word32(value>>32));
- #else
- value = ((value & W64LIT(0xFF00FF00FF00FF00)) >> 8) | ((value & W64LIT(0x00FF00FF00FF00FF)) << 8);
- value = ((value & W64LIT(0xFFFF0000FFFF0000)) >> 16) | ((value & W64LIT(0x0000FFFF0000FFFF)) << 16);
- return rotlFixed(value, 32U);
- #endif
- }
- #if defined(CRYPTOPP_WORD128_AVAILABLE)
- /// \brief Reverses bytes in a 128-bit value
- /// \param value the 128-bit value to reverse
- /// \details ByteReverse calls bswap if available. Otherwise the function uses
- /// a combination of rotates on the word128.
- /// \note word128 is available on some 64-bit platforms when the compiler supports it.
- /// \since Crypto++ 8.7
- inline word128 ByteReverse(word128 value)
- {
- // TODO: speed this up
- return (word128(ByteReverse(word64(value))) << 64) | ByteReverse(word64(value>>64));
- }
- #endif
- /// \brief Reverses bits in a 8-bit value
- /// \param value the 8-bit value to reverse
- /// \details BitReverse performs a combination of shifts on the byte.
- inline byte BitReverse(byte value)
- {
- value = byte((value & 0xAA) >> 1) | byte((value & 0x55) << 1);
- value = byte((value & 0xCC) >> 2) | byte((value & 0x33) << 2);
- return rotlFixed(value, 4U);
- }
- /// \brief Reverses bits in a 16-bit value
- /// \param value the 16-bit value to reverse
- /// \details BitReverse performs a combination of shifts on the word16.
- inline word16 BitReverse(word16 value)
- {
- #if defined(CRYPTOPP_ARM_BITREV_AVAILABLE)
- // 4 instructions on ARM.
- word32 rvalue;
- __asm__ ("rbit %0, %1" : "=r" (rvalue) : "r" (value));
- return word16(rvalue >> 16);
- #else
- // 15 instructions on ARM.
- value = word16((value & 0xAAAA) >> 1) | word16((value & 0x5555) << 1);
- value = word16((value & 0xCCCC) >> 2) | word16((value & 0x3333) << 2);
- value = word16((value & 0xF0F0) >> 4) | word16((value & 0x0F0F) << 4);
- return ByteReverse(value);
- #endif
- }
- /// \brief Reverses bits in a 32-bit value
- /// \param value the 32-bit value to reverse
- /// \details BitReverse performs a combination of shifts on the word32.
- inline word32 BitReverse(word32 value)
- {
- #if defined(CRYPTOPP_ARM_BITREV_AVAILABLE)
- // 2 instructions on ARM.
- word32 rvalue;
- __asm__ ("rbit %0, %1" : "=r" (rvalue) : "r" (value));
- return rvalue;
- #else
- // 19 instructions on ARM.
- value = word32((value & 0xAAAAAAAA) >> 1) | word32((value & 0x55555555) << 1);
- value = word32((value & 0xCCCCCCCC) >> 2) | word32((value & 0x33333333) << 2);
- value = word32((value & 0xF0F0F0F0) >> 4) | word32((value & 0x0F0F0F0F) << 4);
- return ByteReverse(value);
- #endif
- }
- /// \brief Reverses bits in a 64-bit value
- /// \param value the 64-bit value to reverse
- /// \details BitReverse performs a combination of shifts on the word64.
- inline word64 BitReverse(word64 value)
- {
- #if CRYPTOPP_BOOL_SLOW_WORD64
- return (word64(BitReverse(word32(value))) << 32) | BitReverse(word32(value>>32));
- #else
- value = word64((value & W64LIT(0xAAAAAAAAAAAAAAAA)) >> 1) | word64((value & W64LIT(0x5555555555555555)) << 1);
- value = word64((value & W64LIT(0xCCCCCCCCCCCCCCCC)) >> 2) | word64((value & W64LIT(0x3333333333333333)) << 2);
- value = word64((value & W64LIT(0xF0F0F0F0F0F0F0F0)) >> 4) | word64((value & W64LIT(0x0F0F0F0F0F0F0F0F)) << 4);
- return ByteReverse(value);
- #endif
- }
- /// \brief Reverses bits in a value
- /// \param value the value to reverse
- /// \details The template overload of BitReverse operates on signed and unsigned values.
- /// Internally the size of T is checked, and then value is cast to a byte,
- /// word16, word32 or word64. After the cast, the appropriate BitReverse
- /// overload is called.
- /// \note word128 is available on some 64-bit platforms when the compiler supports it.
- /// \since Crypto++ 1.0, word128 since Crypto++ 8.7
- template <class T>
- inline T BitReverse(T value)
- {
- if (sizeof(T) == 1)
- return (T)BitReverse((byte)value);
- else if (sizeof(T) == 2)
- return (T)BitReverse((word16)value);
- else if (sizeof(T) == 4)
- return (T)BitReverse((word32)value);
- else if (sizeof(T) == 8)
- return (T)BitReverse((word64)value);
- #if defined(CRYPTOPP_WORD128_AVAILABLE)
- else if (sizeof(T) == 16)
- return (T)BitReverse((word128)value);
- #endif
- else
- {
- CRYPTOPP_ASSERT(0);
- return (T)BitReverse((word64)value);
- }
- }
- /// \brief Reverses bytes in a value depending upon endianness
- /// \tparam T the class or type
- /// \param order the ByteOrder of the data
- /// \param value the value to conditionally reverse
- /// \details Internally, the ConditionalByteReverse calls NativeByteOrderIs.
- /// If order matches native byte order, then the original value is returned.
- /// If not, then ByteReverse is called on the value before returning to the caller.
- template <class T>
- inline T ConditionalByteReverse(ByteOrder order, T value)
- {
- return NativeByteOrderIs(order) ? value : ByteReverse(value);
- }
- /// \brief Reverses bytes in an element from an array of elements
- /// \tparam T the class or type
- /// \param out the output array of elements
- /// \param in the input array of elements
- /// \param byteCount the total number of bytes in the array
- /// \details Internally, ByteReverse visits each element in the in array
- /// calls ByteReverse on it, and writes the result to out.
- /// \details ByteReverse does not process tail byes, or bytes that are
- /// not part of a full element. If T is int (and int is 4 bytes), then
- /// <tt>byteCount = 10</tt> means only the first 2 elements or 8 bytes are
- /// reversed.
- /// \details The following program should help illustrate the behavior.
- /// <pre>vector<word32> v1, v2;
- ///
- /// v1.push_back(1);
- /// v1.push_back(2);
- /// v1.push_back(3);
- /// v1.push_back(4);
- ///
- /// v2.resize(v1.size());
- /// ByteReverse<word32>(&v2[0], &v1[0], 16);
- ///
- /// cout << "V1: ";
- /// for(unsigned int i = 0; i < v1.size(); i++)
- /// cout << std::hex << v1[i] << " ";
- /// cout << endl;
- ///
- /// cout << "V2: ";
- /// for(unsigned int i = 0; i < v2.size(); i++)
- /// cout << std::hex << v2[i] << " ";
- /// cout << endl;</pre>
- /// The program above results in the following output.
- /// <pre>V1: 00000001 00000002 00000003 00000004
- /// V2: 01000000 02000000 03000000 04000000</pre>
- /// \sa ConditionalByteReverse
- template <class T>
- void ByteReverse(T *out, const T *in, size_t byteCount)
- {
- // Alignment check due to Issues 690
- CRYPTOPP_ASSERT(byteCount % sizeof(T) == 0);
- CRYPTOPP_ASSERT(IsAligned<T>(in));
- CRYPTOPP_ASSERT(IsAligned<T>(out));
- size_t count = byteCount/sizeof(T);
- for (size_t i=0; i<count; i++)
- out[i] = ByteReverse(in[i]);
- }
- /// \brief Conditionally reverses bytes in an element from an array of elements
- /// \tparam T the class or type
- /// \param order the ByteOrder of the data
- /// \param out the output array of elements
- /// \param in the input array of elements
- /// \param byteCount the byte count of the arrays
- /// \details ConditionalByteReverse visits each element in the in array
- /// calls ByteReverse on it depending on the desired endianness, and writes the result to out.
- /// \details ByteReverse does not process tail byes, or bytes that are
- /// not part of a full element. If T is int (and int is 4 bytes), then
- /// <tt>byteCount = 10</tt> means only the first 2 elements or 8 bytes are
- /// reversed.
- /// \sa ByteReverse
- template <class T>
- inline void ConditionalByteReverse(ByteOrder order, T *out, const T *in, size_t byteCount)
- {
- if (!NativeByteOrderIs(order))
- ByteReverse(out, in, byteCount);
- else if (in != out)
- memcpy_s(out, byteCount, in, byteCount);
- }
- /// \brief Copy bytes in a buffer to an array of elements in big-endian order
- /// \tparam T the class or type
- /// \param order the ByteOrder of the data
- /// \param out the output array of elements
- /// \param outlen the byte count of the array
- /// \param in the input array of elements
- /// \param inlen the byte count of the array
- template <class T>
- inline void GetUserKey(ByteOrder order, T *out, size_t outlen, const byte *in, size_t inlen)
- {
- const size_t U = sizeof(T);
- CRYPTOPP_ASSERT(inlen <= outlen*U);
- memcpy_s(out, outlen*U, in, inlen);
- memset_z((byte *)out+inlen, 0, outlen*U-inlen);
- ConditionalByteReverse(order, out, out, RoundUpToMultipleOf(inlen, U));
- }
- /// \brief Retrieve a byte from an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned buffer
- /// \param unused dummy parameter
- /// \return byte value
- /// \details UnalignedGetWordNonTemplate accesses an unaligned buffer and returns a byte value.
- /// \since Crypto++ 1.0
- inline byte UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const byte *unused)
- {
- CRYPTOPP_UNUSED(order); CRYPTOPP_UNUSED(unused);
- return block[0];
- }
- /// \brief Retrieve a word16 from an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned buffer
- /// \param unused dummy parameter
- /// \return byte value
- /// \details UnalignedGetWordNonTemplate accesses an unaligned buffer and returns a word16 value.
- /// \since Crypto++ 1.0
- inline word16 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word16 *unused)
- {
- CRYPTOPP_UNUSED(unused);
- return (order == BIG_ENDIAN_ORDER)
- ? block[1] | (block[0] << 8)
- : block[0] | (block[1] << 8);
- }
- /// \brief Retrieve a word32 from an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned buffer
- /// \param unused dummy parameter
- /// \return byte value
- /// \details UnalignedGetWordNonTemplate accesses an unaligned buffer and returns a word32 value.
- /// \since Crypto++ 1.0
- inline word32 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word32 *unused)
- {
- CRYPTOPP_UNUSED(unused);
- return (order == BIG_ENDIAN_ORDER)
- ? word32(block[3]) | (word32(block[2]) << 8) | (word32(block[1]) << 16) | (word32(block[0]) << 24)
- : word32(block[0]) | (word32(block[1]) << 8) | (word32(block[2]) << 16) | (word32(block[3]) << 24);
- }
- /// \brief Retrieve a word64 from an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned buffer
- /// \param unused dummy parameter
- /// \return byte value
- /// \details UnalignedGetWordNonTemplate accesses an unaligned buffer and returns a word64 value.
- /// \since Crypto++ 1.0
- inline word64 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word64 *unused)
- {
- CRYPTOPP_UNUSED(unused);
- return (order == BIG_ENDIAN_ORDER)
- ?
- (word64(block[7]) |
- (word64(block[6]) << 8) |
- (word64(block[5]) << 16) |
- (word64(block[4]) << 24) |
- (word64(block[3]) << 32) |
- (word64(block[2]) << 40) |
- (word64(block[1]) << 48) |
- (word64(block[0]) << 56))
- :
- (word64(block[0]) |
- (word64(block[1]) << 8) |
- (word64(block[2]) << 16) |
- (word64(block[3]) << 24) |
- (word64(block[4]) << 32) |
- (word64(block[5]) << 40) |
- (word64(block[6]) << 48) |
- (word64(block[7]) << 56));
- }
- #if defined(CRYPTOPP_WORD128_AVAILABLE)
- /// \brief Retrieve a word128 from an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned buffer
- /// \param unused dummy parameter
- /// \return byte value
- /// \details UnalignedGetWordNonTemplate accesses an unaligned buffer and returns a word128 value.
- /// \note word128 is available on some 64-bit platforms when the compiler supports it.
- /// \since Crypto++ 8.7
- inline word128 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word128 *unused)
- {
- CRYPTOPP_UNUSED(unused);
- return (order == BIG_ENDIAN_ORDER)
- ?
- (word128(block[15]) |
- (word128(block[14]) << 8) |
- (word128(block[13]) << 16) |
- (word128(block[12]) << 24) |
- (word128(block[11]) << 32) |
- (word128(block[10]) << 40) |
- (word128(block[ 9]) << 48) |
- (word128(block[ 8]) << 56) |
- (word128(block[ 7]) << 64) |
- (word128(block[ 6]) << 72) |
- (word128(block[ 5]) << 80) |
- (word128(block[ 4]) << 88) |
- (word128(block[ 3]) << 96) |
- (word128(block[ 2]) << 104) |
- (word128(block[ 1]) << 112) |
- (word128(block[ 0]) << 120))
- :
- (word128(block[ 0]) |
- (word128(block[ 1]) << 8) |
- (word128(block[ 2]) << 16) |
- (word128(block[ 3]) << 24) |
- (word128(block[ 4]) << 32) |
- (word128(block[ 5]) << 40) |
- (word128(block[ 6]) << 48) |
- (word128(block[ 7]) << 56) |
- (word128(block[ 8]) << 64) |
- (word128(block[ 9]) << 72) |
- (word128(block[10]) << 80) |
- (word128(block[11]) << 88) |
- (word128(block[12]) << 96) |
- (word128(block[13]) << 104) |
- (word128(block[14]) << 112) |
- (word128(block[15]) << 120));
- }
- #endif
- /// \brief Write a byte to an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned output buffer
- /// \param value byte value
- /// \param xorBlock optional unaligned xor buffer
- /// \details UnalignedbyteNonTemplate writes a byte value to an unaligned buffer.
- /// \since Crypto++ 1.0
- inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, byte value, const byte *xorBlock)
- {
- CRYPTOPP_UNUSED(order);
- block[0] = static_cast<byte>(xorBlock ? (value ^ xorBlock[0]) : value);
- }
- /// \brief Write a word16 to an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned output buffer
- /// \param value word16 value
- /// \param xorBlock optional unaligned xor buffer
- /// \details UnalignedbyteNonTemplate writes a word16 value to an unaligned buffer.
- /// \since Crypto++ 1.0
- inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word16 value, const byte *xorBlock)
- {
- if (order == BIG_ENDIAN_ORDER)
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- }
- else
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- }
- }
- }
- /// \brief Write a word32 to an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned output buffer
- /// \param value word32 value
- /// \param xorBlock optional unaligned xor buffer
- /// \details UnalignedbyteNonTemplate writes a word32 value to an unaligned buffer.
- /// \since Crypto++ 1.0
- inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word32 value, const byte *xorBlock)
- {
- if (order == BIG_ENDIAN_ORDER)
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- }
- else
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- }
- }
- }
- /// \brief Write a word64 to an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned output buffer
- /// \param value word64 value
- /// \param xorBlock optional unaligned xor buffer
- /// \details UnalignedbyteNonTemplate writes a word64 value to an unaligned buffer.
- /// \since Crypto++ 1.0
- inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word64 value, const byte *xorBlock)
- {
- if (order == BIG_ENDIAN_ORDER)
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- }
- else
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- }
- }
- }
- #if defined(CRYPTOPP_WORD128_AVAILABLE)
- /// \brief Write a word128 to an unaligned buffer
- /// \param order the ByteOrder of the data
- /// \param block an unaligned output buffer
- /// \param value word128 value
- /// \param xorBlock optional unaligned xor buffer
- /// \details UnalignedbyteNonTemplate writes a word128 value to an unaligned buffer.
- /// \note word128 is available on some 64-bit platforms when the compiler supports it.
- /// \since Crypto++ 8.7
- inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word128 value, const byte *xorBlock)
- {
- if (order == BIG_ENDIAN_ORDER)
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 15);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 14);
- block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 13);
- block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 12);
- block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 11);
- block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 10);
- block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 9);
- block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 8);
- block[ 8] = xorBlock[ 8] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- block[ 9] = xorBlock[ 9] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[10] = xorBlock[10] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[11] = xorBlock[11] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[12] = xorBlock[12] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[13] = xorBlock[13] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[14] = xorBlock[14] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[15] = xorBlock[15] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 15);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 14);
- block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 13);
- block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 12);
- block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 11);
- block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 10);
- block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 9);
- block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 8);
- block[ 8] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- block[ 9] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[10] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[11] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[12] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[13] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[14] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[15] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- }
- }
- else
- {
- if (xorBlock)
- {
- block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- block[ 8] = xorBlock[ 8] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 8);
- block[ 9] = xorBlock[ 9] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 9);
- block[10] = xorBlock[10] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 10);
- block[11] = xorBlock[11] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 11);
- block[12] = xorBlock[12] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 12);
- block[13] = xorBlock[13] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 13);
- block[14] = xorBlock[14] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 14);
- block[15] = xorBlock[15] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 15);
- }
- else
- {
- block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
- block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
- block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
- block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
- block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
- block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
- block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
- block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
- block[ 8] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 8);
- block[ 9] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 9);
- block[10] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 10);
- block[11] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 11);
- block[12] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 12);
- block[13] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 13);
- block[14] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 14);
- block[15] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 15);
- }
- }
- }
- #endif
- /// \brief Access a block of memory
- /// \tparam T class or type
- /// \param assumeAligned flag indicating alignment
- /// \param order the ByteOrder of the data
- /// \param block the byte buffer to be processed
- /// \return the word in the specified byte order
- /// \details GetWord() provides alternate read access to a block of memory. The flag assumeAligned indicates
- /// if the memory block is aligned for class or type T. The enumeration ByteOrder is BIG_ENDIAN_ORDER or
- /// LITTLE_ENDIAN_ORDER.
- /// \details An example of reading two word32 values from a block of memory is shown below. <tt>w</tt>
- /// will be <tt>0x03020100</tt>.
- /// <pre>
- /// word32 w;
- /// byte buffer[4] = {0,1,2,3};
- /// w = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, buffer);
- /// </pre>
- template <class T>
- inline T GetWord(bool assumeAligned, ByteOrder order, const byte *block)
- {
- CRYPTOPP_UNUSED(assumeAligned);
- T temp = 0;
- if (block != NULLPTR) {std::memcpy(&temp, block, sizeof(T));}
- return ConditionalByteReverse(order, temp);
- }
- /// \brief Access a block of memory
- /// \tparam T class or type
- /// \param assumeAligned flag indicating alignment
- /// \param order the ByteOrder of the data
- /// \param result the word in the specified byte order
- /// \param block the byte buffer to be processed
- /// \details GetWord() provides alternate read access to a block of memory. The flag assumeAligned indicates
- /// if the memory block is aligned for class or type T. The enumeration ByteOrder is BIG_ENDIAN_ORDER or
- /// LITTLE_ENDIAN_ORDER.
- /// \details An example of reading two word32 values from a block of memory is shown below. <tt>w</tt>
- /// will be <tt>0x03020100</tt>.
- /// <pre>
- /// word32 w;
- /// byte buffer[4] = {0,1,2,3};
- /// w = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, buffer);
- /// </pre>
- template <class T>
- inline void GetWord(bool assumeAligned, ByteOrder order, T &result, const byte *block)
- {
- result = GetWord<T>(assumeAligned, order, block);
- }
- /// \brief Access a block of memory
- /// \tparam T class or type
- /// \param assumeAligned flag indicating alignment
- /// \param order the ByteOrder of the data
- /// \param block the destination byte buffer
- /// \param value the word in the specified byte order
- /// \param xorBlock an optional byte buffer to xor
- /// \details PutWord() provides alternate write access to a block of memory. The flag assumeAligned indicates
- /// if the memory block is aligned for class or type T. The enumeration ByteOrder is BIG_ENDIAN_ORDER or
- /// LITTLE_ENDIAN_ORDER.
- template <class T>
- inline void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock = NULLPTR)
- {
- CRYPTOPP_UNUSED(assumeAligned);
- T t1, t2;
- t1 = ConditionalByteReverse(order, value);
- if (xorBlock != NULLPTR) {std::memcpy(&t2, xorBlock, sizeof(T)); t1 ^= t2;}
- if (block != NULLPTR) {std::memcpy(block, &t1, sizeof(T));}
- }
- /// \brief Access a block of memory
- /// \tparam T class or type
- /// \tparam B enumeration indicating endianness
- /// \tparam A flag indicating alignment
- /// \details GetBlock() provides alternate read access to a block of memory. The enumeration B is
- /// BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T.
- /// Repeatedly applying operator() results in advancing in the block of memory.
- /// \details An example of reading two word32 values from a block of memory is shown below. <tt>w1</tt>
- /// will be <tt>0x03020100</tt> and <tt>w1</tt> will be <tt>0x07060504</tt>.
- /// <pre>
- /// word32 w1, w2;
- /// byte buffer[8] = {0,1,2,3,4,5,6,7};
- /// GetBlock<word32, LittleEndian> block(buffer);
- /// block(w1)(w2);
- /// </pre>
- template <class T, class B, bool A=false>
- class GetBlock
- {
- public:
- /// \brief Construct a GetBlock
- /// \param block the memory block
- GetBlock(const void *block)
- : m_block((const byte *)block) {}
- /// \brief Access a block of memory
- /// \tparam U class or type
- /// \param x the value to read
- /// \return pointer to the remainder of the block after reading x
- template <class U>
- inline GetBlock<T, B, A> & operator()(U &x)
- {
- CRYPTOPP_COMPILE_ASSERT(sizeof(U) >= sizeof(T));
- x = GetWord<T>(A, B::ToEnum(), m_block);
- m_block += sizeof(T);
- return *this;
- }
- private:
- const byte *m_block;
- };
- /// \brief Access a block of memory
- /// \tparam T class or type
- /// \tparam B enumeration indicating endianness
- /// \tparam A flag indicating alignment
- /// \details PutBlock() provides alternate write access to a block of memory. The enumeration B is
- /// BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T.
- /// Repeatedly applying operator() results in advancing in the block of memory.
- /// \details An example of writing two word32 values from a block of memory is shown below. After the code
- /// executes, the byte buffer will be <tt>{0,1,2,3,4,5,6,7}</tt>.
- /// <pre>
- /// word32 w1=0x03020100, w2=0x07060504;
- /// byte buffer[8];
- /// PutBlock<word32, LittleEndian> block(NULLPTR, buffer);
- /// block(w1)(w2);
- /// </pre>
- template <class T, class B, bool A=false>
- class PutBlock
- {
- public:
- /// \brief Construct a PutBlock
- /// \param block the memory block
- /// \param xorBlock optional mask
- PutBlock(const void *xorBlock, void *block)
- : m_xorBlock((const byte *)xorBlock), m_block((byte *)block) {}
- /// \brief Access a block of memory
- /// \tparam U class or type
- /// \param x the value to write
- /// \return pointer to the remainder of the block after writing x
- template <class U>
- inline PutBlock<T, B, A> & operator()(U x)
- {
- PutWord(A, B::ToEnum(), m_block, (T)x, m_xorBlock);
- m_block += sizeof(T);
- if (m_xorBlock)
- m_xorBlock += sizeof(T);
- return *this;
- }
- private:
- const byte *m_xorBlock;
- byte *m_block;
- };
- /// \brief Access a block of memory
- /// \tparam T class or type
- /// \tparam B enumeration indicating endianness
- /// \tparam GA flag indicating alignment for the Get operation
- /// \tparam PA flag indicating alignment for the Put operation
- /// \details GetBlock() provides alternate write access to a block of memory. The enumeration B is
- /// BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T.
- /// \sa GetBlock() and PutBlock().
- template <class T, class B, bool GA=false, bool PA=false>
- struct BlockGetAndPut
- {
- // function needed because of C++ grammatical ambiguity between expression-statements and declarations
- static inline GetBlock<T, B, GA> Get(const void *block) {return GetBlock<T, B, GA>(block);}
- typedef PutBlock<T, B, PA> Put;
- };
- /// \brief Convert a word to a string
- /// \tparam T class or type
- /// \param value the word to convert
- /// \param order byte order
- /// \return a string representing the value of the word
- template <class T>
- std::string WordToString(T value, ByteOrder order = BIG_ENDIAN_ORDER)
- {
- if (!NativeByteOrderIs(order))
- value = ByteReverse(value);
- return std::string((char *)&value, sizeof(value));
- }
- /// \brief Convert a string to a word
- /// \tparam T class or type
- /// \param str the string to convert
- /// \param order byte order
- /// \return a word representing the value of the string
- template <class T>
- T StringToWord(const std::string &str, ByteOrder order = BIG_ENDIAN_ORDER)
- {
- T value = 0;
- memcpy_s(&value, sizeof(value), str.data(), UnsignedMin(str.size(), sizeof(value)));
- return NativeByteOrderIs(order) ? value : ByteReverse(value);
- }
- // ************** help remove warning on g++ ***************
- /// \brief Safely shift values when undefined behavior could occur
- /// \tparam overflow boolean flag indicating if overflow is present
- /// \details SafeShifter safely shifts values when undefined behavior could occur under C/C++ rules.
- /// The class behaves much like a saturating arithmetic class, clamping values rather than allowing
- /// the compiler to remove undefined behavior.
- /// \sa SafeShifter<true>, SafeShifter<false>
- template <bool overflow> struct SafeShifter;
- /// \brief Shifts a value in the presence of overflow
- /// \details the true template parameter indicates overflow would occur.
- /// In this case, SafeShifter clamps the value and returns 0.
- template<> struct SafeShifter<true>
- {
- /// \brief Right shifts a value that overflows
- /// \tparam T class or type
- /// \return 0
- /// \details Since <tt>overflow == true</tt>, the value 0 is always returned.
- /// \sa SafeLeftShift
- template <class T>
- static inline T RightShift(T value, unsigned int bits)
- {
- CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits);
- return 0;
- }
- /// \brief Left shifts a value that overflows
- /// \tparam T class or type
- /// \return 0
- /// \details Since <tt>overflow == true</tt>, the value 0 is always returned.
- /// \sa SafeRightShift
- template <class T>
- static inline T LeftShift(T value, unsigned int bits)
- {
- CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits);
- return 0;
- }
- };
- /// \brief Shifts a value in the absence of overflow
- /// \details the false template parameter indicates overflow would not occur.
- /// In this case, SafeShifter returns the shfted value.
- template<> struct SafeShifter<false>
- {
- /// \brief Right shifts a value that does not overflow
- /// \tparam T class or type
- /// \return the shifted value
- /// \details Since <tt>overflow == false</tt>, the shifted value is returned.
- /// \sa SafeLeftShift
- template <class T>
- static inline T RightShift(T value, unsigned int bits)
- {
- return value >> bits;
- }
- /// \brief Left shifts a value that does not overflow
- /// \tparam T class or type
- /// \return the shifted value
- /// \details Since <tt>overflow == false</tt>, the shifted value is returned.
- /// \sa SafeRightShift
- template <class T>
- static inline T LeftShift(T value, unsigned int bits)
- {
- return value << bits;
- }
- };
- /// \brief Safely right shift values when undefined behavior could occur
- /// \tparam bits the number of bit positions to shift the value
- /// \tparam T class or type
- /// \param value the value to right shift
- /// \result the shifted value or 0
- /// \details SafeRightShift safely shifts the value to the right when undefined behavior
- /// could occur under C/C++ rules. SafeRightShift will return the shifted value or 0
- /// if undefined behavior would occur.
- template <unsigned int bits, class T>
- inline T SafeRightShift(T value)
- {
- return SafeShifter<(bits>=(8*sizeof(T)))>::RightShift(value, bits);
- }
- /// \brief Safely left shift values when undefined behavior could occur
- /// \tparam bits the number of bit positions to shift the value
- /// \tparam T class or type
- /// \param value the value to left shift
- /// \result the shifted value or 0
- /// \details SafeLeftShift safely shifts the value to the left when undefined behavior
- /// could occur under C/C++ rules. SafeLeftShift will return the shifted value or 0
- /// if undefined behavior would occur.
- template <unsigned int bits, class T>
- inline T SafeLeftShift(T value)
- {
- return SafeShifter<(bits>=(8*sizeof(T)))>::LeftShift(value, bits);
- }
- /// \brief Finds first element not in a range
- /// \tparam InputIt Input iterator type
- /// \tparam T class or type
- /// \param first iterator to first element
- /// \param last iterator to last element
- /// \param value the value used as a predicate
- /// \return iterator to the first element in the range that is not value
- template<typename InputIt, typename T>
- inline InputIt FindIfNot(InputIt first, InputIt last, const T &value) {
- #ifdef CRYPTOPP_CXX11_LAMBDA
- return std::find_if(first, last, [&value](const T &o) {
- return value!=o;
- });
- #else
- return std::find_if(first, last, std::bind2nd(std::not_equal_to<T>(), value));
- #endif
- }
- // ************** use one buffer for multiple data members ***************
- #define CRYPTOPP_BLOCK_1(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+0);} size_t SS1() {return sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_2(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS1());} size_t SS2() {return SS1()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_3(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS2());} size_t SS3() {return SS2()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_4(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS3());} size_t SS4() {return SS3()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_5(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS4());} size_t SS5() {return SS4()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_6(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS5());} size_t SS6() {return SS5()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_7(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS6());} size_t SS7() {return SS6()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCK_8(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS7());} size_t SS8() {return SS7()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
- #define CRYPTOPP_BLOCKS_END(i) size_t SST() {return SS##i();} void AllocateBlocks() {m_aggregate.New(SST());} AlignedSecByteBlock m_aggregate;
- NAMESPACE_END
- #if (CRYPTOPP_MSC_VERSION)
- # pragma warning(pop)
- #endif
- #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
- # pragma GCC diagnostic pop
- #endif
- #endif
|