| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765 |
- // ppc_simd.h - written and placed in public domain by Jeffrey Walton
- /// \file ppc_simd.h
- /// \brief Support functions for PowerPC and vector operations
- /// \details This header provides an agnostic interface into Clang, GCC
- /// and IBM XL C/C++ compilers modulo their different built-in functions
- /// for accessing vector instructions.
- /// \details The abstractions are necessary to support back to GCC 4.8 and
- /// XLC 11 and 12. GCC 4.8 and 4.9 are still popular, and they are the
- /// default compiler for GCC112, GCC119 and others on the compile farm.
- /// Older IBM XL C/C++ compilers also have the need due to lack of
- /// <tt>vec_xl</tt> and <tt>vec_xst</tt> support on some platforms. Modern
- /// compilers provide best support and don't need many of the hacks
- /// below.
- /// \details The library is tested with the following PowerPC machines and
- /// compilers. GCC110, GCC111, GCC112, GCC119 and GCC135 are provided by
- /// the <A HREF="https://cfarm.tetaneutral.net/">GCC Compile Farm</A>
- /// - PowerMac G5, OSX 10.5, POWER4, Apple GCC 4.0
- /// - PowerMac G5, OSX 10.5, POWER4, Macports GCC 5.0
- /// - GCC110, Linux, POWER7, GCC 4.8.5
- /// - GCC110, Linux, POWER7, XLC 12.01
- /// - GCC111, AIX, POWER7, GCC 4.8.1
- /// - GCC111, AIX, POWER7, XLC 12.01
- /// - GCC112, Linux, POWER8, GCC 4.8.5
- /// - GCC112, Linux, POWER8, XLC 13.01
- /// - GCC112, Linux, POWER8, Clang 7.0
- /// - GCC119, AIX, POWER8, GCC 7.2.0
- /// - GCC119, AIX, POWER8, XLC 13.01
- /// - GCC135, Linux, POWER9, GCC 7.0
- /// \details 12 machines are used for testing because the three compilers form
- /// five or six profiles. The profiles are listed below.
- /// - GCC (Linux GCC, Macports GCC, etc. Consistent across machines)
- /// - XLC 13.0 and earlier (all IBM components)
- /// - XLC 13.1 and later on Linux (LLVM front-end, no compatibility macros)
- /// - XLC 13.1 and later on Linux (LLVM front-end, -qxlcompatmacros option)
- /// - early LLVM Clang (traditional Clang compiler)
- /// - late LLVM Clang (traditional Clang compiler)
- /// \details The LLVM front-end makes it tricky to write portable code because
- /// LLVM pretends to be other compilers but cannot consume other compiler's
- /// builtins. When using XLC with -qxlcompatmacros the compiler pretends to
- /// be GCC, Clang and XLC all at once but it can only consume it's variety
- /// of builtins.
- /// \details At Crypto++ 8.0 the various <tt>Vector{FuncName}</tt> were
- /// renamed to <tt>Vec{FuncName}</tt>. For example, <tt>VectorAnd</tt> was
- /// changed to <tt>VecAnd</tt>. The name change helped consolidate two
- /// slightly different implementations.
- /// \details At Crypto++ 8.3 the library added select 64-bit functions for
- /// 32-bit Altivec. For example, <tt>VecAdd64</tt> and <tt>VecSub64</tt>
- /// take 32-bit vectors and adds or subtracts them as if there were vectors
- /// with two 64-bit elements. The functions dramtically improve performance
- /// for some algorithms on some platforms, like SIMON128 and SPECK128 on
- /// Power6 and earlier. For example, SPECK128 improved from 70 cpb to
- /// 10 cpb on an old PowerMac. Use the functions like shown below.
- /// <pre>
- /// \#if defined(_ARCH_PWR8)
- /// \# define speck128_t uint64x2_p
- /// \#else
- /// \# define speck128_t uint32x4_p
- /// \#endif
- ///
- /// speck128_t rk, x1, x2, y1, y2;
- /// rk = (speck128_t)VecLoadAligned(ptr);
- /// x1 = VecRotateRight64<8>(x1);
- /// x1 = VecAdd64(x1, y1);
- /// ...</pre>
- /// \since Crypto++ 6.0, LLVM Clang compiler support since Crypto++ 8.0
- // Use __ALTIVEC__, _ARCH_PWR7, __VSX__, and _ARCH_PWR8 when detecting
- // actual availaibility of the feature for the source file being compiled.
- // The preprocessor macros depend on compiler options like -maltivec; and
- // not compiler versions.
- // For GCC see https://gcc.gnu.org/onlinedocs/gcc/Basic-PowerPC-Built-in-Functions.html
- // For XLC see the Compiler Reference manual. For Clang you have to experiment.
- // Clang does not document the compiler options, does not reject options it does
- // not understand, and pretends to be other compilers even though it cannot
- // process the builtins and intrinsics. Clang will waste hours of your time.
- // DO NOT USE this pattern in VecLoad and VecStore. We have to use the
- // code paths guarded by preprocessor macros because XLC 12 generates
- // bad code in some places. To verify the bad code generation test on
- // GCC111 with XLC 12.01 installed. XLC 13.01 on GCC112 and GCC119 are OK.
- //
- // inline uint32x4_p VecLoad(const byte src[16])
- // {
- // #if defined(__VSX__) || defined(_ARCH_PWR8)
- // return (uint32x4_p) *(uint8x16_p*)((byte*)src);
- // #else
- // return VecLoad_ALTIVEC(src);
- // #endif
- // }
- // We should be able to perform the load using inline asm on Power7 with
- // VSX or Power8. The inline asm will avoid C undefined behavior due to
- // casting from byte* to word32*. We are safe because our byte* are
- // 16-byte aligned for Altivec. Below is the big endian load. Little
- // endian would need to follow with xxpermdi for the reversal.
- //
- // __asm__ ("lxvw4x %x0, %1, %2" : "=wa"(v) : "r"(0), "r"(src) : );
- // GCC and XLC use integer math for the address (D-form or byte-offset
- // in the ISA manual). LLVM uses pointer math for the address (DS-form
- // or indexed in the ISA manual). To keep them consistent we calculate
- // the address from the offset and pass to a load or store function
- // using a 0 offset.
- #ifndef CRYPTOPP_PPC_CRYPTO_H
- #define CRYPTOPP_PPC_CRYPTO_H
- #include "config.h"
- #include "misc.h"
- #if defined(__ALTIVEC__)
- # include <altivec.h>
- # undef vector
- # undef pixel
- # undef bool
- #endif
- // XL C++ on AIX does not define VSX and does not
- // provide an option to set it. We have to set it
- // for the code below. This define must stay in
- // sync with the define in test_ppc_power7.cpp.
- #ifndef CRYPTOPP_DISABLE_POWER7
- # if defined(_AIX) && defined(_ARCH_PWR7) && defined(__xlC__)
- # define __VSX__ 1
- # endif
- #endif
- // XL C++ on AIX does not define CRYPTO and does not
- // provide an option to set it. We have to set it
- // for the code below. This define must stay in
- // sync with the define in test_ppc_power8.cpp
- #ifndef CRYPTOPP_DISABLE_POWER8
- # if defined(_AIX) && defined(_ARCH_PWR8) && defined(__xlC__)
- # define __CRYPTO__ 1
- # endif
- #endif
- /// \brief Cast array to vector pointer
- /// \details CONST_V8_CAST casts a const array to a vector
- /// pointer for a byte array. The Power ABI says source arrays
- /// are non-const, so this define removes the const. XLC++ will
- /// fail the compile if the source array is const.
- #define CONST_V8_CAST(x) ((unsigned char*)(x))
- /// \brief Cast array to vector pointer
- /// \details CONST_V32_CAST casts a const array to a vector
- /// pointer for a word array. The Power ABI says source arrays
- /// are non-const, so this define removes the const. XLC++ will
- /// fail the compile if the source array is const.
- #define CONST_V32_CAST(x) ((unsigned int*)(x))
- /// \brief Cast array to vector pointer
- /// \details CONST_V64_CAST casts a const array to a vector
- /// pointer for a double word array. The Power ABI says source arrays
- /// are non-const, so this define removes the const. XLC++ will
- /// fail the compile if the source array is const.
- #define CONST_V64_CAST(x) ((unsigned long long*)(x))
- /// \brief Cast array to vector pointer
- /// \details NCONST_V8_CAST casts an array to a vector
- /// pointer for a byte array. The Power ABI says source arrays
- /// are non-const, so this define removes the const. XLC++ will
- /// fail the compile if the source array is const.
- #define NCONST_V8_CAST(x) ((unsigned char*)(x))
- /// \brief Cast array to vector pointer
- /// \details NCONST_V32_CAST casts an array to a vector
- /// pointer for a word array. The Power ABI says source arrays
- /// are non-const, so this define removes the const. XLC++ will
- /// fail the compile if the source array is const.
- #define NCONST_V32_CAST(x) ((unsigned int*)(x))
- /// \brief Cast array to vector pointer
- /// \details NCONST_V64_CAST casts an array to a vector
- /// pointer for a double word array. The Power ABI says source arrays
- /// are non-const, so this define removes the const. XLC++ will
- /// fail the compile if the source array is const.
- #define NCONST_V64_CAST(x) ((unsigned long long*)(x))
- // VecLoad_ALTIVEC and VecStore_ALTIVEC are
- // too noisy on modern compilers
- #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
- # pragma GCC diagnostic push
- # pragma GCC diagnostic ignored "-Wdeprecated"
- #endif
- NAMESPACE_BEGIN(CryptoPP)
- #if defined(__ALTIVEC__) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
- /// \brief Vector of 8-bit elements
- /// \par Wraps
- /// __vector unsigned char
- /// \since Crypto++ 6.0
- typedef __vector unsigned char uint8x16_p;
- /// \brief Vector of 16-bit elements
- /// \par Wraps
- /// __vector unsigned short
- /// \since Crypto++ 6.0
- typedef __vector unsigned short uint16x8_p;
- /// \brief Vector of 32-bit elements
- /// \par Wraps
- /// __vector unsigned int
- /// \since Crypto++ 6.0
- typedef __vector unsigned int uint32x4_p;
- #if defined(__VSX__) || defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
- /// \brief Vector of 64-bit elements
- /// \details uint64x2_p is available on POWER7 with VSX and above. Most
- /// supporting functions, like 64-bit <tt>vec_add</tt> (<tt>vaddudm</tt>)
- /// and <tt>vec_sub</tt> (<tt>vsubudm</tt>), did not arrive until POWER8.
- /// \par Wraps
- /// __vector unsigned long long
- /// \since Crypto++ 6.0
- typedef __vector unsigned long long uint64x2_p;
- #endif // VSX or ARCH_PWR8
- /// \brief The 0 vector
- /// \return a 32-bit vector of 0's
- /// \since Crypto++ 8.0
- inline uint32x4_p VecZero()
- {
- const uint32x4_p v = {0,0,0,0};
- return v;
- }
- /// \brief The 1 vector
- /// \return a 32-bit vector of 1's
- /// \since Crypto++ 8.0
- inline uint32x4_p VecOne()
- {
- const uint32x4_p v = {1,1,1,1};
- return v;
- }
- /// \brief Reverse bytes in a vector
- /// \tparam T vector type
- /// \param data the vector
- /// \return vector
- /// \details VecReverse() reverses the bytes in a vector
- /// \par Wraps
- /// vec_perm
- /// \since Crypto++ 6.0
- template <class T>
- inline T VecReverse(const T data)
- {
- #if defined(CRYPTOPP_BIG_ENDIAN)
- const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
- return (T)vec_perm(data, data, mask);
- #else
- const uint8x16_p mask = {0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15};
- return (T)vec_perm(data, data, mask);
- #endif
- }
- /// \brief Reverse bytes in a vector
- /// \tparam T vector type
- /// \param data the vector
- /// \return vector
- /// \details VecReverseLE() reverses the bytes in a vector on
- /// little-endian systems.
- /// \par Wraps
- /// vec_perm
- /// \since Crypto++ 6.0
- template <class T>
- inline T VecReverseLE(const T data)
- {
- #if defined(CRYPTOPP_LITTLE_ENDIAN)
- const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
- return (T)vec_perm(data, data, mask);
- #else
- return data;
- #endif
- }
- /// \brief Reverse bytes in a vector
- /// \tparam T vector type
- /// \param data the vector
- /// \return vector
- /// \details VecReverseBE() reverses the bytes in a vector on
- /// big-endian systems.
- /// \par Wraps
- /// vec_perm
- /// \since Crypto++ 6.0
- template <class T>
- inline T VecReverseBE(const T data)
- {
- #if defined(CRYPTOPP_BIG_ENDIAN)
- const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
- return (T)vec_perm(data, data, mask);
- #else
- return data;
- #endif
- }
- /// \name LOAD OPERATIONS
- //@{
- /// \brief Loads a vector from a byte array
- /// \param src the byte array
- /// \details Loads a vector in native endian format from a byte array.
- /// \details VecLoad_ALTIVEC() uses <tt>vec_ld</tt> if the effective address
- /// of <tt>src</tt> is aligned. If unaligned it uses <tt>vec_lvsl</tt>,
- /// <tt>vec_ld</tt>, <tt>vec_perm</tt> and <tt>src</tt>. The fixups using
- /// <tt>vec_lvsl</tt> and <tt>vec_perm</tt> are relatively expensive so
- /// you should provide aligned memory addresses.
- /// \par Wraps
- /// vec_ld, vec_lvsl, vec_perm
- /// \sa VecLoad, VecLoadAligned
- /// \since Crypto++ 6.0
- inline uint32x4_p VecLoad_ALTIVEC(const byte src[16])
- {
- // Avoid IsAlignedOn for convenience.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
- if (addr % 16 == 0)
- {
- return (uint32x4_p)vec_ld(0, CONST_V8_CAST(addr));
- }
- else
- {
- // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
- const uint8x16_p perm = vec_lvsl(0, CONST_V8_CAST(addr));
- const uint8x16_p low = vec_ld(0, CONST_V8_CAST(addr));
- const uint8x16_p high = vec_ld(15, CONST_V8_CAST(addr));
- return (uint32x4_p)vec_perm(low, high, perm);
- }
- }
- /// \brief Loads a vector from a byte array
- /// \param src the byte array
- /// \param off offset into the src byte array
- /// \details Loads a vector in native endian format from a byte array.
- /// \details VecLoad_ALTIVEC() uses <tt>vec_ld</tt> if the effective address
- /// of <tt>src</tt> is aligned. If unaligned it uses <tt>vec_lvsl</tt>,
- /// <tt>vec_ld</tt>, <tt>vec_perm</tt> and <tt>src</tt>.
- /// \details The fixups using <tt>vec_lvsl</tt> and <tt>vec_perm</tt> are
- /// relatively expensive so you should provide aligned memory addresses.
- /// \par Wraps
- /// vec_ld, vec_lvsl, vec_perm
- /// \sa VecLoad, VecLoadAligned
- /// \since Crypto++ 6.0
- inline uint32x4_p VecLoad_ALTIVEC(int off, const byte src[16])
- {
- // Avoid IsAlignedOn for convenience.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
- if (addr % 16 == 0)
- {
- return (uint32x4_p)vec_ld(0, CONST_V8_CAST(addr));
- }
- else
- {
- // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
- const uint8x16_p perm = vec_lvsl(0, CONST_V8_CAST(addr));
- const uint8x16_p low = vec_ld(0, CONST_V8_CAST(addr));
- const uint8x16_p high = vec_ld(15, CONST_V8_CAST(addr));
- return (uint32x4_p)vec_perm(low, high, perm);
- }
- }
- /// \brief Loads a vector from a byte array
- /// \param src the byte array
- /// \details VecLoad() loads a vector from a byte array.
- /// \details VecLoad() uses POWER9's <tt>vec_xl</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecLoad_ALTIVEC() is used if POWER9 is not available.
- /// VecLoad_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xl on POWER9 and above, Altivec load on POWER8 and below
- /// \sa VecLoad_ALTIVEC, VecLoadAligned
- /// \since Crypto++ 6.0
- inline uint32x4_p VecLoad(const byte src[16])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- return (uint32x4_p)vec_xl(0, CONST_V8_CAST(src));
- #else
- return (uint32x4_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
- #endif
- }
- /// \brief Loads a vector from a byte array
- /// \param src the byte array
- /// \param off offset into the src byte array
- /// \details VecLoad() loads a vector from a byte array.
- /// \details VecLoad() uses POWER9's <tt>vec_xl</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecLoad_ALTIVEC() is used if POWER9 is not available.
- /// VecLoad_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xl on POWER9 and above, Altivec load on POWER8 and below
- /// \sa VecLoad_ALTIVEC, VecLoadAligned
- /// \since Crypto++ 6.0
- inline uint32x4_p VecLoad(int off, const byte src[16])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- return (uint32x4_p)vec_xl(off, CONST_V8_CAST(src));
- #else
- return (uint32x4_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
- #endif
- }
- /// \brief Loads a vector from a word array
- /// \param src the word array
- /// \details VecLoad() loads a vector from a word array.
- /// \details VecLoad() uses POWER7's and VSX's <tt>vec_xl</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecLoad_ALTIVEC() is used if POWER7 is not available.
- /// VecLoad_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xl on VSX or POWER8 and above, Altivec load on POWER7 and below
- /// \sa VecLoad_ALTIVEC, VecLoadAligned
- /// \since Crypto++ 8.0
- inline uint32x4_p VecLoad(const word32 src[4])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- return (uint32x4_p)vec_xl(0, CONST_V8_CAST(src));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- return (uint32x4_p)vec_xl(0, CONST_V32_CAST(addr));
- #else
- return (uint32x4_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
- #endif
- }
- /// \brief Loads a vector from a word array
- /// \param src the word array
- /// \param off offset into the word array
- /// \details VecLoad() loads a vector from a word array.
- /// \details VecLoad() uses POWER7's and VSX's <tt>vec_xl</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecLoad_ALTIVEC() is used if POWER7 is not available.
- /// VecLoad_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xl on VSX or POWER8 and above, Altivec load on POWER7 and below
- /// \sa VecLoad_ALTIVEC, VecLoadAligned
- /// \since Crypto++ 8.0
- inline uint32x4_p VecLoad(int off, const word32 src[4])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- return (uint32x4_p)vec_xl(off, CONST_V8_CAST(src));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- return (uint32x4_p)vec_xl(0, CONST_V32_CAST(addr));
- #else
- return (uint32x4_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
- #endif
- }
- #if defined(__VSX__) || defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
- /// \brief Loads a vector from a double word array
- /// \param src the double word array
- /// \details VecLoad() loads a vector from a double word array.
- /// \details VecLoad() uses POWER7's and VSX's <tt>vec_xl</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecLoad_ALTIVEC() is used if POWER7 and VSX are not available.
- /// VecLoad_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \details VecLoad() with 64-bit elements is available on POWER7 and above.
- /// \par Wraps
- /// vec_xl on VSX or POWER8 and above, Altivec load on POWER7 and below
- /// \sa VecLoad_ALTIVEC, VecLoadAligned
- /// \since Crypto++ 8.0
- inline uint64x2_p VecLoad(const word64 src[2])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<word64>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- return (uint64x2_p)vec_xl(0, CONST_V8_CAST(src));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- // The 32-bit cast is not a typo. Compiler workaround.
- return (uint64x2_p)vec_xl(0, CONST_V32_CAST(addr));
- #else
- return (uint64x2_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
- #endif
- }
- /// \brief Loads a vector from a double word array
- /// \param src the double word array
- /// \param off offset into the double word array
- /// \details VecLoad() loads a vector from a double word array.
- /// \details VecLoad() uses POWER7's and VSX's <tt>vec_xl</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecLoad_ALTIVEC() is used if POWER7 and VSX are not available.
- /// VecLoad_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \details VecLoad() with 64-bit elements is available on POWER8 and above.
- /// \par Wraps
- /// vec_xl on VSX or POWER8 and above, Altivec load on POWER7 and below
- /// \sa VecLoad_ALTIVEC, VecLoadAligned
- /// \since Crypto++ 8.0
- inline uint64x2_p VecLoad(int off, const word64 src[2])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<word64>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- return (uint64x2_p)vec_xl(off, CONST_V8_CAST(src));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- // The 32-bit cast is not a typo. Compiler workaround.
- return (uint64x2_p)vec_xl(0, CONST_V32_CAST(addr));
- #else
- return (uint64x2_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
- #endif
- }
- #endif // VSX or ARCH_PWR8
- /// \brief Loads a vector from an aligned byte array
- /// \param src the byte array
- /// \details VecLoadAligned() loads a vector from an aligned byte array.
- /// \details VecLoadAligned() uses POWER9's <tt>vec_xl</tt> if available.
- /// <tt>vec_ld</tt> is used if POWER9 is not available. The effective
- /// address of <tt>src</tt> must be 16-byte aligned for Altivec.
- /// \par Wraps
- /// vec_xl on POWER9, vec_ld on POWER8 and below
- /// \sa VecLoad_ALTIVEC, VecLoad
- /// \since Crypto++ 8.0
- inline uint32x4_p VecLoadAligned(const byte src[16])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
- CRYPTOPP_ASSERT(addr % 16 == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- return (uint32x4_p)vec_xl(0, CONST_V8_CAST(src));
- #else
- return (uint32x4_p)vec_ld(0, CONST_V8_CAST(src));
- #endif
- }
- /// \brief Loads a vector from an aligned byte array
- /// \param src the byte array
- /// \param off offset into the src byte array
- /// \details VecLoadAligned() loads a vector from an aligned byte array.
- /// \details VecLoadAligned() uses POWER9's <tt>vec_xl</tt> if available.
- /// <tt>vec_ld</tt> is used if POWER9 is not available. The effective
- /// address of <tt>src</tt> must be 16-byte aligned for Altivec.
- /// \par Wraps
- /// vec_xl on POWER9, vec_ld on POWER8 and below
- /// \sa VecLoad_ALTIVEC, VecLoad
- /// \since Crypto++ 8.0
- inline uint32x4_p VecLoadAligned(int off, const byte src[16])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
- CRYPTOPP_ASSERT(addr % 16 == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- return (uint32x4_p)vec_xl(off, CONST_V8_CAST(src));
- #else
- return (uint32x4_p)vec_ld(off, CONST_V8_CAST(src));
- #endif
- }
- /// \brief Loads a vector from an aligned word array
- /// \param src the word array
- /// \details VecLoadAligned() loads a vector from an aligned word array.
- /// \details VecLoadAligned() uses POWER7's and VSX's <tt>vec_xl</tt> if
- /// available. <tt>vec_ld</tt> is used if POWER7 or VSX are not available.
- /// The effective address of <tt>src</tt> must be 16-byte aligned for Altivec.
- /// \par Wraps
- /// vec_xl on VSX or POWER8 and above, vec_ld on POWER7 and below
- /// \sa VecLoad_ALTIVEC, VecLoad
- /// \since Crypto++ 8.0
- inline uint32x4_p VecLoadAligned(const word32 src[4])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
- CRYPTOPP_ASSERT(addr % 16 == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- return (uint32x4_p)vec_xl(0, CONST_V8_CAST(src));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- return (uint32x4_p)vec_xl(0, CONST_V32_CAST(src));
- #else
- return (uint32x4_p)vec_ld(0, CONST_V8_CAST(src));
- #endif
- }
- /// \brief Loads a vector from an aligned word array
- /// \param src the word array
- /// \param off offset into the src word array
- /// \details VecLoadAligned() loads a vector from an aligned word array.
- /// \details VecLoadAligned() uses POWER7's and VSX's <tt>vec_xl</tt> if
- /// available. <tt>vec_ld</tt> is used if POWER7 or VSX are not available.
- /// The effective address of <tt>src</tt> must be 16-byte aligned for Altivec.
- /// \par Wraps
- /// vec_xl on VSX or POWER8 and above, vec_ld on POWER7 and below
- /// \sa VecLoad_ALTIVEC, VecLoad
- /// \since Crypto++ 8.0
- inline uint32x4_p VecLoadAligned(int off, const word32 src[4])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
- CRYPTOPP_ASSERT(addr % 16 == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- return (uint32x4_p)vec_xl(off, CONST_V8_CAST(src));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- return (uint32x4_p)vec_xl(0, CONST_V32_CAST(addr));
- #else
- return (uint32x4_p)vec_ld(off, CONST_V8_CAST(src));
- #endif
- }
- #if defined(__VSX__) || defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
- /// \brief Loads a vector from an aligned double word array
- /// \param src the double word array
- /// \details VecLoadAligned() loads a vector from an aligned double word array.
- /// \details VecLoadAligned() uses POWER7's and VSX's <tt>vec_xl</tt> if
- /// available. <tt>vec_ld</tt> is used if POWER7 or VSX are not available.
- /// The effective address of <tt>src</tt> must be 16-byte aligned for Altivec.
- /// \par Wraps
- /// vec_xl on VSX or POWER8 and above, vec_ld on POWER7 and below
- /// \sa VecLoad_ALTIVEC, VecLoad
- /// \since Crypto++ 8.0
- inline uint64x2_p VecLoadAligned(const word64 src[4])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
- CRYPTOPP_ASSERT(addr % 16 == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- return (uint64x2_p)vec_xl(0, CONST_V8_CAST(src));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- // The 32-bit cast is not a typo. Compiler workaround.
- return (uint64x2_p)vec_xl(0, CONST_V32_CAST(src));
- #else
- return (uint64x2_p)vec_ld(0, CONST_V8_CAST(src));
- #endif
- }
- /// \brief Loads a vector from an aligned double word array
- /// \param src the double word array
- /// \param off offset into the src double word array
- /// \details VecLoadAligned() loads a vector from an aligned double word array.
- /// \details VecLoadAligned() uses POWER7's and VSX's <tt>vec_xl</tt> if
- /// available. <tt>vec_ld</tt> is used if POWER7 or VSX are not available.
- /// The effective address of <tt>src</tt> must be 16-byte aligned for Altivec.
- /// \par Wraps
- /// vec_xl on VSX or POWER8 and above, vec_ld on POWER7 and below
- /// \sa VecLoad_ALTIVEC, VecLoad
- /// \since Crypto++ 8.0
- inline uint64x2_p VecLoadAligned(int off, const word64 src[4])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
- CRYPTOPP_ASSERT(addr % 16 == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- return (uint64x2_p)vec_xl(off, CONST_V8_CAST(src));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- // The 32-bit cast is not a typo. Compiler workaround.
- return (uint64x2_p)vec_xl(0, CONST_V32_CAST(addr));
- #else
- return (uint64x2_p)vec_ld(off, CONST_V8_CAST(src));
- #endif
- }
- #endif
- /// \brief Loads a vector from a byte array
- /// \param src the byte array
- /// \details VecLoadBE() loads a vector from a byte array. VecLoadBE
- /// will reverse all bytes in the array on a little endian system.
- /// \details VecLoadBE() uses POWER7's and VSX's <tt>vec_xl</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecLoad_ALTIVEC() is used if POWER7 or VSX are not available.
- /// VecLoad_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xl on POWER8, Altivec load on POWER7 and below
- /// \sa VecLoad_ALTIVEC, VecLoad, VecLoadAligned
- /// \since Crypto++ 6.0
- inline uint32x4_p VecLoadBE(const byte src[16])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src);
- // CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
- return (uint32x4_p)vec_xl_be(0, CONST_V8_CAST(src));
- #elif defined(CRYPTOPP_BIG_ENDIAN)
- return (uint32x4_p)VecLoad_ALTIVEC(0, CONST_V8_CAST(src));
- #else
- return (uint32x4_p)VecReverseLE(VecLoad_ALTIVEC(CONST_V8_CAST(src)));
- #endif
- }
- /// \brief Loads a vector from a byte array
- /// \param src the byte array
- /// \param off offset into the src byte array
- /// \details VecLoadBE() loads a vector from a byte array. VecLoadBE
- /// will reverse all bytes in the array on a little endian system.
- /// \details VecLoadBE() uses POWER7's and VSX's <tt>vec_xl</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecLoad_ALTIVEC() is used if POWER7 is not available.
- /// VecLoad_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xl on POWER8, Altivec load on POWER7 and below
- /// \sa VecLoad_ALTIVEC, VecLoad, VecLoadAligned
- /// \since Crypto++ 6.0
- inline uint32x4_p VecLoadBE(int off, const byte src[16])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(src)+off;
- // CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
- return (uint32x4_p)vec_xl_be(off, CONST_V8_CAST(src));
- #elif defined(CRYPTOPP_BIG_ENDIAN)
- return (uint32x4_p)VecLoad_ALTIVEC(CONST_V8_CAST(addr));
- #else
- return (uint32x4_p)VecReverseLE(VecLoad_ALTIVEC(CONST_V8_CAST(addr)));
- #endif
- }
- //@}
- /// \name STORE OPERATIONS
- //@{
- /// \brief Stores a vector to a byte array
- /// \tparam T vector type
- /// \param data the vector
- /// \param dest the byte array
- /// \details VecStore_ALTIVEC() stores a vector to a byte array.
- /// \details VecStore_ALTIVEC() uses <tt>vec_st</tt> if the effective address
- /// of <tt>dest</tt> is aligned, and uses <tt>vec_ste</tt> otherwise.
- /// <tt>vec_ste</tt> is relatively expensive so you should provide aligned
- /// memory addresses.
- /// \details VecStore_ALTIVEC() is used when POWER7 or above
- /// and unaligned loads is not available.
- /// \par Wraps
- /// vec_st, vec_ste, vec_lvsr, vec_perm
- /// \sa VecStore, VecStoreAligned
- /// \since Crypto++ 8.0
- template<class T>
- inline void VecStore_ALTIVEC(const T data, byte dest[16])
- {
- // Avoid IsAlignedOn for convenience.
- uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
- if (addr % 16 == 0)
- {
- vec_st((uint8x16_p)data, 0, NCONST_V8_CAST(addr));
- }
- else
- {
- // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
- uint8x16_p perm = (uint8x16_p)vec_perm(data, data, vec_lvsr(0, NCONST_V8_CAST(addr)));
- vec_ste((uint8x16_p) perm, 0, (unsigned char*) NCONST_V8_CAST(addr));
- vec_ste((uint16x8_p) perm, 1, (unsigned short*)NCONST_V8_CAST(addr));
- vec_ste((uint32x4_p) perm, 3, (unsigned int*) NCONST_V8_CAST(addr));
- vec_ste((uint32x4_p) perm, 4, (unsigned int*) NCONST_V8_CAST(addr));
- vec_ste((uint32x4_p) perm, 8, (unsigned int*) NCONST_V8_CAST(addr));
- vec_ste((uint32x4_p) perm, 12, (unsigned int*) NCONST_V8_CAST(addr));
- vec_ste((uint16x8_p) perm, 14, (unsigned short*)NCONST_V8_CAST(addr));
- vec_ste((uint8x16_p) perm, 15, (unsigned char*) NCONST_V8_CAST(addr));
- }
- }
- /// \brief Stores a vector to a byte array
- /// \tparam T vector type
- /// \param data the vector
- /// \param off offset into the dest byte array
- /// \param dest the byte array
- /// \details VecStore_ALTIVEC() stores a vector to a byte array.
- /// \details VecStore_ALTIVEC() uses <tt>vec_st</tt> if the effective address
- /// of <tt>dest</tt> is aligned, and uses <tt>vec_ste</tt> otherwise.
- /// <tt>vec_ste</tt> is relatively expensive so you should provide aligned
- /// memory addresses.
- /// \details VecStore_ALTIVEC() is used when POWER7 or above
- /// and unaligned loads is not available.
- /// \par Wraps
- /// vec_st, vec_ste, vec_lvsr, vec_perm
- /// \sa VecStore, VecStoreAligned
- /// \since Crypto++ 8.0
- template<class T>
- inline void VecStore_ALTIVEC(const T data, int off, byte dest[16])
- {
- // Avoid IsAlignedOn for convenience.
- uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
- if (addr % 16 == 0)
- {
- vec_st((uint8x16_p)data, 0, NCONST_V8_CAST(addr));
- }
- else
- {
- // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
- uint8x16_p perm = (uint8x16_p)vec_perm(data, data, vec_lvsr(0, NCONST_V8_CAST(addr)));
- vec_ste((uint8x16_p) perm, 0, (unsigned char*) NCONST_V8_CAST(addr));
- vec_ste((uint16x8_p) perm, 1, (unsigned short*)NCONST_V8_CAST(addr));
- vec_ste((uint32x4_p) perm, 3, (unsigned int*) NCONST_V8_CAST(addr));
- vec_ste((uint32x4_p) perm, 4, (unsigned int*) NCONST_V8_CAST(addr));
- vec_ste((uint32x4_p) perm, 8, (unsigned int*) NCONST_V8_CAST(addr));
- vec_ste((uint32x4_p) perm, 12, (unsigned int*) NCONST_V8_CAST(addr));
- vec_ste((uint16x8_p) perm, 14, (unsigned short*)NCONST_V8_CAST(addr));
- vec_ste((uint8x16_p) perm, 15, (unsigned char*) NCONST_V8_CAST(addr));
- }
- }
- /// \brief Stores a vector to a byte array
- /// \tparam T vector type
- /// \param data the vector
- /// \param dest the byte array
- /// \details VecStore() stores a vector to a byte array.
- /// \details VecStore() uses POWER9's <tt>vec_xst</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecStore_ALTIVEC() is used if POWER9 is not available.
- /// VecStore_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xst on POWER9 and above, Altivec store on POWER8 and below
- /// \sa VecStore_ALTIVEC, VecStoreAligned
- /// \since Crypto++ 6.0
- template<class T>
- inline void VecStore(const T data, byte dest[16])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
- #else
- VecStore_ALTIVEC((uint8x16_p)data, NCONST_V8_CAST(dest));
- #endif
- }
- /// \brief Stores a vector to a byte array
- /// \tparam T vector type
- /// \param data the vector
- /// \param off offset into the dest byte array
- /// \param dest the byte array
- /// \details VecStore() stores a vector to a byte array.
- /// \details VecStore() uses POWER9's <tt>vec_xst</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecStore_ALTIVEC() is used if POWER9 is not available.
- /// VecStore_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xst on POWER9 and above, Altivec store on POWER8 and below
- /// \sa VecStore_ALTIVEC, VecStoreAligned
- /// \since Crypto++ 6.0
- template<class T>
- inline void VecStore(const T data, int off, byte dest[16])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst((uint8x16_p)data, off, NCONST_V8_CAST(dest));
- #else
- VecStore_ALTIVEC((uint8x16_p)data, NCONST_V8_CAST(addr));
- #endif
- }
- /// \brief Stores a vector to a word array
- /// \tparam T vector type
- /// \param data the vector
- /// \param dest the word array
- /// \details VecStore() stores a vector to a word array.
- /// \details VecStore() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecStore_ALTIVEC() is used if POWER7 or VSX are not available.
- /// VecStore_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xst on VSX or POWER8 and above, Altivec store on POWER7 and below
- /// \sa VecStore_ALTIVEC, VecStoreAligned
- /// \since Crypto++ 8.0
- template<class T>
- inline void VecStore(const T data, word32 dest[4])
- {
- // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks stores for short* and char*.
- // Power9/ISA 3.0 provides vec_xst for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- vec_xst((uint32x4_p)data, 0, NCONST_V32_CAST(addr));
- #else
- VecStore_ALTIVEC((uint8x16_p)data, NCONST_V8_CAST(addr));
- #endif
- }
- /// \brief Stores a vector to a word array
- /// \tparam T vector type
- /// \param data the vector
- /// \param off offset into the dest word array
- /// \param dest the word array
- /// \details VecStore() stores a vector to a word array.
- /// \details VecStore() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecStore_ALTIVEC() is used if POWER7 or VSX are not available.
- /// VecStore_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xst on VSX or POWER8 and above, Altivec store on POWER7 and below
- /// \sa VecStore_ALTIVEC, VecStoreAligned
- /// \since Crypto++ 8.0
- template<class T>
- inline void VecStore(const T data, int off, word32 dest[4])
- {
- // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks stores for short* and char*.
- // Power9/ISA 3.0 provides vec_xst for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst((uint8x16_p)data, off, NCONST_V8_CAST(dest));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- vec_xst((uint32x4_p)data, 0, NCONST_V32_CAST(addr));
- #else
- VecStore_ALTIVEC((uint8x16_p)data, NCONST_V8_CAST(addr));
- #endif
- }
- /// \brief Stores a vector to a word array
- /// \tparam T vector type
- /// \param data the vector
- /// \param dest the word array
- /// \details VecStore() stores a vector to a word array.
- /// \details VecStore() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecStore_ALTIVEC() is used if POWER7 or VSX are not available.
- /// VecStore_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \details VecStore() with 64-bit elements is available on POWER8 and above.
- /// \par Wraps
- /// vec_xst on VSX or POWER8 and above, Altivec store on POWER7 and below
- /// \sa VecStore_ALTIVEC, VecStoreAligned
- /// \since Crypto++ 8.0
- template<class T>
- inline void VecStore(const T data, word64 dest[2])
- {
- // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks stores for short* and char*.
- // Power9/ISA 3.0 provides vec_xst for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<word64>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- // 32-bit cast is not a typo. Compiler workaround.
- vec_xst((uint32x4_p)data, 0, NCONST_V32_CAST(addr));
- #else
- VecStore_ALTIVEC((uint8x16_p)data, NCONST_V8_CAST(addr));
- #endif
- }
- /// \brief Stores a vector to a word array
- /// \tparam T vector type
- /// \param data the vector
- /// \param off offset into the dest word array
- /// \param dest the word array
- /// \details VecStore() stores a vector to a word array.
- /// \details VecStore() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecStore_ALTIVEC() is used if POWER7 or VSX are not available.
- /// VecStore_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \details VecStore() with 64-bit elements is available on POWER8 and above.
- /// \par Wraps
- /// vec_xst on VSX or POWER8 and above, Altivec store on POWER7 and below
- /// \sa VecStore_ALTIVEC, VecStoreAligned
- /// \since Crypto++ 8.0
- template<class T>
- inline void VecStore(const T data, int off, word64 dest[2])
- {
- // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks stores for short* and char*.
- // Power9/ISA 3.0 provides vec_xst for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<word64>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst((uint8x16_p)data, off, NCONST_V8_CAST(dest));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- // 32-bit cast is not a typo. Compiler workaround.
- vec_xst((uint32x4_p)data, 0, NCONST_V32_CAST(addr));
- #else
- VecStore_ALTIVEC((uint8x16_p)data, NCONST_V8_CAST(addr));
- #endif
- }
- /// \brief Stores a vector to a byte array
- /// \tparam T vector type
- /// \param data the vector
- /// \param dest the byte array
- /// \details VecStoreAligned() stores a vector from an aligned byte array.
- /// \details VecStoreAligned() uses POWER9's <tt>vec_xl</tt> if available.
- /// <tt>vec_st</tt> is used if POWER9 is not available. The effective
- /// address of <tt>dest</tt> must be 16-byte aligned for Altivec.
- /// \par Wraps
- /// vec_xst on POWER9 or above, vec_st on POWER8 and below
- /// \sa VecStore_ALTIVEC, VecStore
- /// \since Crypto++ 8.0
- template<class T>
- inline void VecStoreAligned(const T data, byte dest[16])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
- #else
- vec_st((uint8x16_p)data, 0, NCONST_V8_CAST(addr));
- #endif
- }
- /// \brief Stores a vector to a byte array
- /// \tparam T vector type
- /// \param data the vector
- /// \param off offset into the dest byte array
- /// \param dest the byte array
- /// \details VecStoreAligned() stores a vector from an aligned byte array.
- /// \details VecStoreAligned() uses POWER9's <tt>vec_xl</tt> if available.
- /// <tt>vec_st</tt> is used if POWER9 is not available. The effective
- /// address of <tt>dest</tt> must be 16-byte aligned for Altivec.
- /// \par Wraps
- /// vec_xst on POWER9 or above, vec_st on POWER8 and below
- /// \sa VecStore_ALTIVEC, VecStore
- /// \since Crypto++ 8.0
- template<class T>
- inline void VecStoreAligned(const T data, int off, byte dest[16])
- {
- // Power7/ISA 2.06 provides vec_xl, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks loads for short* and char*.
- // Power9/ISA 3.0 provides vec_xl for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst((uint8x16_p)data, off, NCONST_V8_CAST(dest));
- #else
- vec_st((uint8x16_p)data, 0, NCONST_V8_CAST(addr));
- #endif
- }
- /// \brief Stores a vector to a word array
- /// \tparam T vector type
- /// \param data the vector
- /// \param dest the word array
- /// \details VecStoreAligned() stores a vector from an aligned word array.
- /// \details VecStoreAligned() uses POWER9's <tt>vec_xl</tt> if available.
- /// POWER7 <tt>vec_xst</tt> is used if POWER9 is not available. <tt>vec_st</tt>
- /// is used if POWER7 is not available. The effective address of <tt>dest</tt>
- /// must be 16-byte aligned for Altivec.
- /// \par Wraps
- /// vec_xst on VSX or POWER8 and above, vec_st on POWER7 and below
- /// \sa VecStore_ALTIVEC, VecStore
- /// \since Crypto++ 8.0
- template<class T>
- inline void VecStoreAligned(const T data, word32 dest[4])
- {
- // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks stores for short* and char*.
- // Power9/ISA 3.0 provides vec_xst for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- vec_xst((uint32x4_p)data, 0, NCONST_V32_CAST(addr));
- #else
- vec_st((uint8x16_p)data, 0, NCONST_V8_CAST(addr));
- #endif
- }
- /// \brief Stores a vector to a word array
- /// \tparam T vector type
- /// \param data the vector
- /// \param off offset into the dest word array
- /// \param dest the word array
- /// \details VecStoreAligned() stores a vector from an aligned word array.
- /// \details VecStoreAligned() uses POWER9's <tt>vec_xl</tt> if available.
- /// POWER7 <tt>vec_xst</tt> is used if POWER9 is not available. <tt>vec_st</tt>
- /// is used if POWER7 is not available. The effective address of <tt>dest</tt>
- /// must be 16-byte aligned for Altivec.
- /// \par Wraps
- /// vec_xst on VSX or POWER8 and above, vec_st on POWER7 and below
- /// \sa VecStore_ALTIVEC, VecStore
- /// \since Crypto++ 8.0
- template<class T>
- inline void VecStoreAligned(const T data, int off, word32 dest[4])
- {
- // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks stores for short* and char*.
- // Power9/ISA 3.0 provides vec_xst for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst((uint8x16_p)data, off, NCONST_V8_CAST(dest));
- #elif defined(__VSX__) || defined(_ARCH_PWR8)
- vec_xst((uint32x4_p)data, 0, NCONST_V32_CAST(addr));
- #else
- vec_st((uint8x16_p)data, 0, NCONST_V8_CAST(addr));
- #endif
- }
- /// \brief Stores a vector to a byte array
- /// \tparam T vector type
- /// \param data the vector
- /// \param dest the byte array
- /// \details VecStoreBE() stores a vector to a byte array. VecStoreBE
- /// will reverse all bytes in the array on a little endian system.
- /// \details VecStoreBE() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecStore_ALTIVEC() is used if POWER7 is not available.
- /// VecStore_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xst on VSX or POWER8 and above, vec_st on POWER7 and below
- /// \sa VecStore_ALTIVEC, VecStoreAligned
- /// \since Crypto++ 6.0
- template <class T>
- inline void VecStoreBE(const T data, byte dest[16])
- {
- // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks stores for short* and char*.
- // Power9/ISA 3.0 provides vec_xst for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst_be((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
- #elif defined(CRYPTOPP_BIG_ENDIAN)
- VecStore((uint8x16_p)data, NCONST_V8_CAST(addr));
- #else
- VecStore((uint8x16_p)VecReverseLE(data), NCONST_V8_CAST(addr));
- #endif
- }
- /// \brief Stores a vector to a byte array
- /// \tparam T vector type
- /// \param data the vector
- /// \param off offset into the dest byte array
- /// \param dest the byte array
- /// \details VecStoreBE() stores a vector to a byte array. VecStoreBE
- /// will reverse all bytes in the array on a little endian system.
- /// \details VecStoreBE() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecStore_ALTIVEC() is used if POWER7 is not available.
- /// VecStore_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xst on VSX or POWER8 and above, vec_st on POWER7 and below
- /// \sa VecStore_ALTIVEC, VecStoreAligned
- /// \since Crypto++ 6.0
- template <class T>
- inline void VecStoreBE(const T data, int off, byte dest[16])
- {
- // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks stores for short* and char*.
- // Power9/ISA 3.0 provides vec_xst for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<byte>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst_be((uint8x16_p)data, off, NCONST_V8_CAST(dest));
- #elif defined(CRYPTOPP_BIG_ENDIAN)
- VecStore((uint8x16_p)data, NCONST_V8_CAST(addr));
- #else
- VecStore((uint8x16_p)VecReverseLE(data), NCONST_V8_CAST(addr));
- #endif
- }
- /// \brief Stores a vector to a word array
- /// \tparam T vector type
- /// \param data the vector
- /// \param dest the word array
- /// \details VecStoreBE() stores a vector to a word array. VecStoreBE
- /// will reverse all bytes in the array on a little endian system.
- /// \details VecStoreBE() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecStore_ALTIVEC() is used if POWER7 is not available.
- /// VecStore_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xst on VSX or POWER8 and above, vec_st on POWER7 and below
- /// \sa VecStore_ALTIVEC, VecStoreAligned
- /// \since Crypto++ 8.0
- template <class T>
- inline void VecStoreBE(const T data, word32 dest[4])
- {
- // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks stores for short* and char*.
- // Power9/ISA 3.0 provides vec_xst for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest);
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst_be((uint8x16_p)data, 0, NCONST_V8_CAST(dest));
- #elif defined(CRYPTOPP_BIG_ENDIAN)
- VecStore((uint32x4_p)data, NCONST_V32_CAST(addr));
- #else
- VecStore((uint32x4_p)VecReverseLE(data), NCONST_V32_CAST(addr));
- #endif
- }
- /// \brief Stores a vector to a word array
- /// \tparam T vector type
- /// \param data the vector
- /// \param off offset into the dest word array
- /// \param dest the word array
- /// \details VecStoreBE() stores a vector to a word array. VecStoreBE
- /// will reverse all words in the array on a little endian system.
- /// \details VecStoreBE() uses POWER7's and VSX's <tt>vec_xst</tt> if available.
- /// The instruction does not require aligned effective memory addresses.
- /// VecStore_ALTIVEC() is used if POWER7 is not available.
- /// VecStore_ALTIVEC() can be relatively expensive if extra instructions
- /// are required to fix up unaligned memory addresses.
- /// \par Wraps
- /// vec_xst on VSX or POWER8 and above, vec_st on POWER7 and below
- /// \sa VecStore_ALTIVEC, VecStoreAligned
- /// \since Crypto++ 8.0
- template <class T>
- inline void VecStoreBE(const T data, int off, word32 dest[4])
- {
- // Power7/ISA 2.06 provides vec_xst, but only for 32-bit and 64-bit
- // word pointers. The ISA lacks stores for short* and char*.
- // Power9/ISA 3.0 provides vec_xst for all datatypes.
- const uintptr_t addr = reinterpret_cast<uintptr_t>(dest)+off;
- CRYPTOPP_ASSERT(addr % GetAlignmentOf<word32>() == 0);
- CRYPTOPP_UNUSED(addr);
- #if defined(_ARCH_PWR9)
- vec_xst_be((uint8x16_p)data, off, NCONST_V8_CAST(dest));
- #elif defined(CRYPTOPP_BIG_ENDIAN)
- VecStore((uint32x4_p)data, NCONST_V32_CAST(addr));
- #else
- VecStore((uint32x4_p)VecReverseLE(data), NCONST_V32_CAST(addr));
- #endif
- }
- //@}
- /// \name LOGICAL OPERATIONS
- //@{
- /// \brief AND two vectors
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \return vector
- /// \details VecAnd() performs <tt>vec1 & vec2</tt>.
- /// vec2 is cast to the same type as vec1. The return vector
- /// is the same type as vec1.
- /// \par Wraps
- /// vec_and
- /// \sa VecAnd64
- /// \since Crypto++ 6.0
- template <class T1, class T2>
- inline T1 VecAnd(const T1 vec1, const T2 vec2)
- {
- return (T1)vec_and(vec1, (T1)vec2);
- }
- /// \brief OR two vectors
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \return vector
- /// \details VecOr() performs <tt>vec1 | vec2</tt>.
- /// vec2 is cast to the same type as vec1. The return vector
- /// is the same type as vec1.
- /// \par Wraps
- /// vec_or
- /// \sa VecOr64
- /// \since Crypto++ 6.0
- template <class T1, class T2>
- inline T1 VecOr(const T1 vec1, const T2 vec2)
- {
- return (T1)vec_or(vec1, (T1)vec2);
- }
- /// \brief XOR two vectors
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \return vector
- /// \details VecXor() performs <tt>vec1 ^ vec2</tt>.
- /// vec2 is cast to the same type as vec1. The return vector
- /// is the same type as vec1.
- /// \par Wraps
- /// vec_xor
- /// \sa VecXor64
- /// \since Crypto++ 6.0
- template <class T1, class T2>
- inline T1 VecXor(const T1 vec1, const T2 vec2)
- {
- return (T1)vec_xor(vec1, (T1)vec2);
- }
- //@}
- /// \name ARITHMETIC OPERATIONS
- //@{
- /// \brief Add two vectors
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \return vector
- /// \details VecAdd() performs <tt>vec1 + vec2</tt>.
- /// vec2 is cast to the same type as vec1. The return vector
- /// is the same type as vec1.
- /// \par Wraps
- /// vec_add
- /// \sa VecAdd64
- /// \since Crypto++ 6.0
- template <class T1, class T2>
- inline T1 VecAdd(const T1 vec1, const T2 vec2)
- {
- return (T1)vec_add(vec1, (T1)vec2);
- }
- /// \brief Subtract two vectors
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \details VecSub() performs <tt>vec1 - vec2</tt>.
- /// vec2 is cast to the same type as vec1. The return vector
- /// is the same type as vec1.
- /// \par Wraps
- /// vec_sub
- /// \sa VecSub64
- /// \since Crypto++ 6.0
- template <class T1, class T2>
- inline T1 VecSub(const T1 vec1, const T2 vec2)
- {
- return (T1)vec_sub(vec1, (T1)vec2);
- }
- //@}
- /// \name PERMUTE OPERATIONS
- //@{
- /// \brief Permutes a vector
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param vec the vector
- /// \param mask vector mask
- /// \return vector
- /// \details VecPermute() creates a new vector from vec according to mask.
- /// mask is an uint8x16_p vector. The return vector is the same type as vec.
- /// \par Wraps
- /// vec_perm
- /// \since Crypto++ 6.0
- template <class T1, class T2>
- inline T1 VecPermute(const T1 vec, const T2 mask)
- {
- return (T1)vec_perm(vec, vec, (uint8x16_p)mask);
- }
- /// \brief Permutes two vectors
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \param mask vector mask
- /// \return vector
- /// \details VecPermute() creates a new vector from vec1 and vec2 according to mask.
- /// mask is an uint8x16_p vector. The return vector is the same type as vec.
- /// \par Wraps
- /// vec_perm
- /// \since Crypto++ 6.0
- template <class T1, class T2>
- inline T1 VecPermute(const T1 vec1, const T1 vec2, const T2 mask)
- {
- return (T1)vec_perm(vec1, (T1)vec2, (uint8x16_p)mask);
- }
- //@}
- /// \name SHIFT AND ROTATE OPERATIONS
- //@{
- /// \brief Shift a vector left
- /// \tparam C shift byte count
- /// \tparam T vector type
- /// \param vec the vector
- /// \return vector
- /// \details VecShiftLeftOctet() returns a new vector after shifting the
- /// concatenation of the zero vector and the source vector by the specified
- /// number of bytes. The return vector is the same type as vec.
- /// \details On big endian machines VecShiftLeftOctet() is <tt>vec_sld(a, z,
- /// c)</tt>. On little endian machines VecShiftLeftOctet() is translated to
- /// <tt>vec_sld(z, a, 16-c)</tt>. You should always call the function as
- /// if on a big endian machine as shown below.
- /// <pre>
- /// uint8x16_p x = VecLoad(ptr);
- /// uint8x16_p y = VecShiftLeftOctet<12>(x);
- /// </pre>
- /// \par Wraps
- /// vec_sld
- /// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
- /// endian sensitive?</A> on Stack Overflow
- /// \since Crypto++ 6.0
- template <unsigned int C, class T>
- inline T VecShiftLeftOctet(const T vec)
- {
- const T zero = {0};
- if (C >= 16)
- {
- // Out of range
- return zero;
- }
- else if (C == 0)
- {
- // Noop
- return vec;
- }
- else
- {
- #if defined(CRYPTOPP_BIG_ENDIAN)
- enum { R=C&0xf };
- return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)zero, R);
- #else
- enum { R=(16-C)&0xf }; // Linux xlC 13.1 workaround in Debug builds
- return (T)vec_sld((uint8x16_p)zero, (uint8x16_p)vec, R);
- #endif
- }
- }
- /// \brief Shift a vector right
- /// \tparam C shift byte count
- /// \tparam T vector type
- /// \param vec the vector
- /// \return vector
- /// \details VecShiftRightOctet() returns a new vector after shifting the
- /// concatenation of the zero vector and the source vector by the specified
- /// number of bytes. The return vector is the same type as vec.
- /// \details On big endian machines VecShiftRightOctet() is <tt>vec_sld(a, z,
- /// c)</tt>. On little endian machines VecShiftRightOctet() is translated to
- /// <tt>vec_sld(z, a, 16-c)</tt>. You should always call the function as
- /// if on a big endian machine as shown below.
- /// <pre>
- /// uint8x16_p x = VecLoad(ptr);
- /// uint8x16_p y = VecShiftRightOctet<12>(y);
- /// </pre>
- /// \par Wraps
- /// vec_sld
- /// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
- /// endian sensitive?</A> on Stack Overflow
- /// \since Crypto++ 6.0
- template <unsigned int C, class T>
- inline T VecShiftRightOctet(const T vec)
- {
- const T zero = {0};
- if (C >= 16)
- {
- // Out of range
- return zero;
- }
- else if (C == 0)
- {
- // Noop
- return vec;
- }
- else
- {
- #if defined(CRYPTOPP_BIG_ENDIAN)
- enum { R=(16-C)&0xf }; // Linux xlC 13.1 workaround in Debug builds
- return (T)vec_sld((uint8x16_p)zero, (uint8x16_p)vec, R);
- #else
- enum { R=C&0xf };
- return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)zero, R);
- #endif
- }
- }
- /// \brief Rotate a vector left
- /// \tparam C shift byte count
- /// \tparam T vector type
- /// \param vec the vector
- /// \return vector
- /// \details VecRotateLeftOctet() returns a new vector after rotating the
- /// concatenation of the source vector with itself by the specified
- /// number of bytes. The return vector is the same type as vec.
- /// \par Wraps
- /// vec_sld
- /// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
- /// endian sensitive?</A> on Stack Overflow
- /// \since Crypto++ 6.0
- template <unsigned int C, class T>
- inline T VecRotateLeftOctet(const T vec)
- {
- #if defined(CRYPTOPP_BIG_ENDIAN)
- enum { R = C&0xf };
- return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
- #else
- enum { R=(16-C)&0xf }; // Linux xlC 13.1 workaround in Debug builds
- return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
- #endif
- }
- /// \brief Rotate a vector right
- /// \tparam C shift byte count
- /// \tparam T vector type
- /// \param vec the vector
- /// \return vector
- /// \details VecRotateRightOctet() returns a new vector after rotating the
- /// concatenation of the source vector with itself by the specified
- /// number of bytes. The return vector is the same type as vec.
- /// \par Wraps
- /// vec_sld
- /// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
- /// endian sensitive?</A> on Stack Overflow
- /// \since Crypto++ 6.0
- template <unsigned int C, class T>
- inline T VecRotateRightOctet(const T vec)
- {
- #if defined(CRYPTOPP_BIG_ENDIAN)
- enum { R=(16-C)&0xf }; // Linux xlC 13.1 workaround in Debug builds
- return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
- #else
- enum { R = C&0xf };
- return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
- #endif
- }
- /// \brief Rotate a vector left
- /// \tparam C rotate bit count
- /// \param vec the vector
- /// \return vector
- /// \details VecRotateLeft() rotates each element in a vector by
- /// bit count. The return vector is the same type as vec.
- /// \par Wraps
- /// vec_rl
- /// \since Crypto++ 7.0
- template<unsigned int C>
- inline uint32x4_p VecRotateLeft(const uint32x4_p vec)
- {
- const uint32x4_p m = {C, C, C, C};
- return vec_rl(vec, m);
- }
- /// \brief Rotate a vector right
- /// \tparam C rotate bit count
- /// \param vec the vector
- /// \return vector
- /// \details VecRotateRight() rotates each element in a vector
- /// by bit count. The return vector is the same type as vec.
- /// \par Wraps
- /// vec_rl
- /// \since Crypto++ 7.0
- template<unsigned int C>
- inline uint32x4_p VecRotateRight(const uint32x4_p vec)
- {
- const uint32x4_p m = {32-C, 32-C, 32-C, 32-C};
- return vec_rl(vec, m);
- }
- /// \brief Shift a vector left
- /// \tparam C shift bit count
- /// \param vec the vector
- /// \return vector
- /// \details VecShiftLeft() rotates each element in a vector
- /// by bit count. The return vector is the same type as vec.
- /// \par Wraps
- /// vec_sl
- /// \since Crypto++ 8.1
- template<unsigned int C>
- inline uint32x4_p VecShiftLeft(const uint32x4_p vec)
- {
- const uint32x4_p m = {C, C, C, C};
- return vec_sl(vec, m);
- }
- /// \brief Shift a vector right
- /// \tparam C shift bit count
- /// \param vec the vector
- /// \return vector
- /// \details VecShiftRight() rotates each element in a vector
- /// by bit count. The return vector is the same type as vec.
- /// \par Wraps
- /// vec_rl
- /// \since Crypto++ 8.1
- template<unsigned int C>
- inline uint32x4_p VecShiftRight(const uint32x4_p vec)
- {
- const uint32x4_p m = {C, C, C, C};
- return vec_sr(vec, m);
- }
- // 64-bit elements available at POWER7 with VSX, but vec_rl and vec_sl require POWER8
- #if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
- /// \brief Rotate a vector left
- /// \tparam C rotate bit count
- /// \param vec the vector
- /// \return vector
- /// \details VecRotateLeft() rotates each element in a vector
- /// by bit count. The return vector is the same type as vec.
- /// \details VecRotateLeft() with 64-bit elements is available on
- /// POWER8 and above.
- /// \par Wraps
- /// vec_rl
- /// \since Crypto++ 8.0
- template<unsigned int C>
- inline uint64x2_p VecRotateLeft(const uint64x2_p vec)
- {
- const uint64x2_p m = {C, C};
- return vec_rl(vec, m);
- }
- /// \brief Shift a vector left
- /// \tparam C shift bit count
- /// \param vec the vector
- /// \return vector
- /// \details VecShiftLeft() rotates each element in a vector
- /// by bit count. The return vector is the same type as vec.
- /// \details VecShiftLeft() with 64-bit elements is available on
- /// POWER8 and above.
- /// \par Wraps
- /// vec_sl
- /// \since Crypto++ 8.1
- template<unsigned int C>
- inline uint64x2_p VecShiftLeft(const uint64x2_p vec)
- {
- const uint64x2_p m = {C, C};
- return vec_sl(vec, m);
- }
- /// \brief Rotate a vector right
- /// \tparam C rotate bit count
- /// \param vec the vector
- /// \return vector
- /// \details VecRotateRight() rotates each element in a vector
- /// by bit count. The return vector is the same type as vec.
- /// \details VecRotateRight() with 64-bit elements is available on
- /// POWER8 and above.
- /// \par Wraps
- /// vec_rl
- /// \since Crypto++ 8.0
- template<unsigned int C>
- inline uint64x2_p VecRotateRight(const uint64x2_p vec)
- {
- const uint64x2_p m = {64-C, 64-C};
- return vec_rl(vec, m);
- }
- /// \brief Shift a vector right
- /// \tparam C shift bit count
- /// \param vec the vector
- /// \return vector
- /// \details VecShiftRight() rotates each element in a vector
- /// by bit count. The return vector is the same type as vec.
- /// \details VecShiftRight() with 64-bit elements is available on
- /// POWER8 and above.
- /// \par Wraps
- /// vec_sr
- /// \since Crypto++ 8.1
- template<unsigned int C>
- inline uint64x2_p VecShiftRight(const uint64x2_p vec)
- {
- const uint64x2_p m = {C, C};
- return vec_sr(vec, m);
- }
- #endif // ARCH_PWR8
- //@}
- /// \name OTHER OPERATIONS
- //@{
- /// \brief Merge two vectors
- /// \tparam T vector type
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \return vector
- /// \par Wraps
- /// vec_mergel
- /// \since Crypto++ 8.1
- template <class T>
- inline T VecMergeLow(const T vec1, const T vec2)
- {
- return vec_mergel(vec1, vec2);
- }
- /// \brief Merge two vectors
- /// \tparam T vector type
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \return vector
- /// \par Wraps
- /// vec_mergeh
- /// \since Crypto++ 8.1
- template <class T>
- inline T VecMergeHigh(const T vec1, const T vec2)
- {
- return vec_mergeh(vec1, vec2);
- }
- /// \brief Broadcast 32-bit word to a vector
- /// \param val the 32-bit value
- /// \return vector
- /// \par Wraps
- /// vec_splats
- /// \since Crypto++ 8.3
- inline uint32x4_p VecSplatWord(word32 val)
- {
- // Fix spurious GCC warning???
- CRYPTOPP_UNUSED(val);
- // Apple Altivec and XL C++ do not offer vec_splats.
- // GCC offers vec_splats back to -mcpu=power4.
- #if defined(_ARCH_PWR4) && defined(__GNUC__)
- return vec_splats(val);
- #else
- //const word32 x[4] = {val,val,val,val};
- //return VecLoad(x);
- const word32 x[4] = {val};
- return vec_splat(VecLoad(x),0);
- #endif
- }
- /// \brief Broadcast 32-bit element to a vector
- /// \tparam the element number
- /// \param val the 32-bit value
- /// \return vector
- /// \par Wraps
- /// vec_splat
- /// \since Crypto++ 8.3
- template <unsigned int N>
- inline uint32x4_p VecSplatElement(const uint32x4_p val)
- {
- return vec_splat(val, N);
- }
- #if defined(__VSX__) || defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
- /// \brief Broadcast 64-bit double word to a vector
- /// \param val the 64-bit value
- /// \return vector
- /// \par Wraps
- /// vec_splats
- /// \since Crypto++ 8.3
- inline uint64x2_p VecSplatWord(word64 val)
- {
- // The PPC64 ABI says so.
- return vec_splats((unsigned long long)val);
- }
- /// \brief Broadcast 64-bit element to a vector
- /// \tparam the element number
- /// \param val the 64-bit value
- /// \return vector
- /// \par Wraps
- /// vec_splat
- /// \since Crypto++ 8.3
- template <unsigned int N>
- inline uint64x2_p VecSplatElement(const uint64x2_p val)
- {
- #if defined(__VSX__) || defined(_ARCH_PWR8)
- return vec_splat(val, N);
- #else
- enum {E=N&1};
- if (E == 0)
- {
- const uint8x16_p m = {0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7};
- return vec_perm(val, val, m);
- }
- else // (E == 1)
- {
- const uint8x16_p m = {8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15};
- return vec_perm(val, val, m);
- }
- #endif
- }
- #endif
- /// \brief Extract a dword from a vector
- /// \tparam T vector type
- /// \param val the vector
- /// \return vector created from low dword
- /// \details VecGetLow() extracts the low dword from a vector. The low dword
- /// is composed of the least significant bits and occupies bytes 8 through 15
- /// when viewed as a big endian array. The return vector is the same type as
- /// the original vector and padded with 0's in the most significant bit positions.
- /// \par Wraps
- /// vec_sld
- /// \since Crypto++ 7.0
- template <class T>
- inline T VecGetLow(const T val)
- {
- #if defined(CRYPTOPP_BIG_ENDIAN) && (defined(__VSX__) || defined(_ARCH_PWR8))
- const T zero = {0};
- return (T)VecMergeLow((uint64x2_p)zero, (uint64x2_p)val);
- #else
- return VecShiftRightOctet<8>(VecShiftLeftOctet<8>(val));
- #endif
- }
- /// \brief Extract a dword from a vector
- /// \tparam T vector type
- /// \param val the vector
- /// \return vector created from high dword
- /// \details VecGetHigh() extracts the high dword from a vector. The high dword
- /// is composed of the most significant bits and occupies bytes 0 through 7
- /// when viewed as a big endian array. The return vector is the same type as
- /// the original vector and padded with 0's in the most significant bit positions.
- /// \par Wraps
- /// vec_sld
- /// \since Crypto++ 7.0
- template <class T>
- inline T VecGetHigh(const T val)
- {
- #if defined(CRYPTOPP_BIG_ENDIAN) && (defined(__VSX__) || defined(_ARCH_PWR8))
- const T zero = {0};
- return (T)VecMergeHigh((uint64x2_p)zero, (uint64x2_p)val);
- #else
- return VecShiftRightOctet<8>(val);
- #endif
- }
- /// \brief Exchange high and low double words
- /// \tparam T vector type
- /// \param vec the vector
- /// \return vector
- /// \par Wraps
- /// vec_sld
- /// \since Crypto++ 7.0
- template <class T>
- inline T VecSwapWords(const T vec)
- {
- return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, 8);
- }
- //@}
- /// \name COMPARISON
- //@{
- /// \brief Compare two vectors
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \return true if vec1 equals vec2, false otherwise
- /// \details VecEqual() performs a bitwise compare. The vector element types do
- /// not matter.
- /// \par Wraps
- /// vec_all_eq
- /// \since Crypto++ 8.0
- template <class T1, class T2>
- inline bool VecEqual(const T1 vec1, const T2 vec2)
- {
- return 1 == vec_all_eq((uint32x4_p)vec1, (uint32x4_p)vec2);
- }
- /// \brief Compare two vectors
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \return true if vec1 does not equal vec2, false otherwise
- /// \details VecNotEqual() performs a bitwise compare. The vector element types do
- /// not matter.
- /// \par Wraps
- /// vec_all_eq
- /// \since Crypto++ 8.0
- template <class T1, class T2>
- inline bool VecNotEqual(const T1 vec1, const T2 vec2)
- {
- return 0 == vec_all_eq((uint32x4_p)vec1, (uint32x4_p)vec2);
- }
- //@}
- ////////////////// 32-bit Altivec /////////////////
- /// \name 32-BIT ALTIVEC
- //@{
- /// \brief Add two vectors as if uint64x2_p
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \return vector
- /// \details VecAdd64() performs <tt>vec1 + vec2</tt>. VecAdd64() performs as
- /// if adding two uint64x2_p vectors. On POWER7 and below VecAdd64() manages
- /// the carries from the elements.
- /// \par Wraps
- /// vec_add for POWER8, vec_addc, vec_perm, vec_add for Altivec
- /// \since Crypto++ 8.3
- inline uint32x4_p VecAdd64(const uint32x4_p& vec1, const uint32x4_p& vec2)
- {
- // 64-bit elements available at POWER7 with VSX, but addudm requires POWER8
- #if defined(_ARCH_PWR8) && !defined(CRYPTOPP_DEBUG)
- return (uint32x4_p)vec_add((uint64x2_p)vec1, (uint64x2_p)vec2);
- #else
- // The carry mask selects carrys for elements 1 and 3 and sets
- // remaining elements to 0. The results is then shifted so the
- // carried values are added to elements 0 and 2.
- #if defined(CRYPTOPP_BIG_ENDIAN)
- const uint32x4_p zero = {0, 0, 0, 0};
- const uint32x4_p mask = {0, 1, 0, 1};
- #else
- const uint32x4_p zero = {0, 0, 0, 0};
- const uint32x4_p mask = {1, 0, 1, 0};
- #endif
- uint32x4_p cy = vec_addc(vec1, vec2);
- uint32x4_p res = vec_add(vec1, vec2);
- cy = vec_and(mask, cy);
- cy = vec_sld (cy, zero, 4);
- return vec_add(res, cy);
- #endif
- }
- #if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
- /// \brief Add two vectors as if uint64x2_p
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \return vector
- /// \details VecAdd64() performs <tt>vec1 + vec2</tt>. VecAdd64() performs as
- /// if adding two uint64x2_p vectors. On POWER7 and below VecAdd64() manages
- /// the carries from the elements.
- /// \par Wraps
- /// vec_add for POWER8
- /// \since Crypto++ 8.3
- inline uint64x2_p VecAdd64(const uint64x2_p& vec1, const uint64x2_p& vec2)
- {
- // 64-bit elements available at POWER7 with VSX, but addudm requires POWER8
- const uint64x2_p res = vec_add(vec1, vec2);
- #if defined(CRYPTOPP_DEBUG)
- // Test 32-bit add in debug builds while we are here.
- const uint32x4_p x = (uint32x4_p)vec1;
- const uint32x4_p y = (uint32x4_p)vec2;
- const uint32x4_p r = VecAdd64(x, y);
- CRYPTOPP_ASSERT(vec_all_eq((uint32x4_p)res, r) == 1);
- #endif
- return res;
- }
- #endif
- /// \brief Subtract two vectors as if uint64x2_p
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \details VecSub64() performs <tt>vec1 - vec2</tt>. VecSub64() performs as
- /// if subtracting two uint64x2_p vectors. On POWER7 and below VecSub64()
- /// manages the borrows from the elements.
- /// \par Wraps
- /// vec_sub for POWER8, vec_subc, vec_andc, vec_perm, vec_sub for Altivec
- /// \since Crypto++ 8.3
- inline uint32x4_p VecSub64(const uint32x4_p& vec1, const uint32x4_p& vec2)
- {
- #if defined(_ARCH_PWR8) && !defined(CRYPTOPP_DEBUG)
- // 64-bit elements available at POWER7 with VSX, but subudm requires POWER8
- return (uint32x4_p)vec_sub((uint64x2_p)vec1, (uint64x2_p)vec2);
- #else
- // The borrow mask selects borrows for elements 1 and 3 and sets
- // remaining elements to 0. The results is then shifted so the
- // borrowed values are subtracted from elements 0 and 2.
- #if defined(CRYPTOPP_BIG_ENDIAN)
- const uint32x4_p zero = {0, 0, 0, 0};
- const uint32x4_p mask = {0, 1, 0, 1};
- #else
- const uint32x4_p zero = {0, 0, 0, 0};
- const uint32x4_p mask = {1, 0, 1, 0};
- #endif
- // subc sets the complement of borrow, so we have to
- // un-complement it using andc.
- uint32x4_p bw = vec_subc(vec1, vec2);
- uint32x4_p res = vec_sub(vec1, vec2);
- bw = vec_andc(mask, bw);
- bw = vec_sld (bw, zero, 4);
- return vec_sub(res, bw);
- #endif
- }
- #if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
- /// \brief Subtract two vectors as if uint64x2_p
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \details VecSub64() performs <tt>vec1 - vec2</tt>. VecSub64() performs as
- /// if subtracting two uint64x2_p vectors. On POWER7 and below VecSub64()
- /// manages the borrows from the elements.
- /// \par Wraps
- /// vec_sub for POWER8
- /// \since Crypto++ 8.3
- inline uint64x2_p VecSub64(const uint64x2_p& vec1, const uint64x2_p& vec2)
- {
- // 64-bit elements available at POWER7 with VSX, but subudm requires POWER8
- const uint64x2_p res = vec_sub(vec1, vec2);
- #if defined(CRYPTOPP_DEBUG)
- // Test 32-bit sub in debug builds while we are here.
- const uint32x4_p x = (uint32x4_p)vec1;
- const uint32x4_p y = (uint32x4_p)vec2;
- const uint32x4_p r = VecSub64(x, y);
- CRYPTOPP_ASSERT(vec_all_eq((uint32x4_p)res, r) == 1);
- #endif
- return res;
- }
- #endif
- /// \brief Rotate a vector left as if uint64x2_p
- /// \tparam C rotate bit count
- /// \param vec the vector
- /// \return vector
- /// \details VecRotateLeft() rotates each element in a vector by bit count.
- /// vec is rotated as if uint64x2_p.
- /// \par Wraps
- /// vec_rl
- /// \since Crypto++ 8.3
- template<unsigned int C>
- inline uint32x4_p VecRotateLeft64(const uint32x4_p vec)
- {
- #if defined(_ARCH_PWR8) && !defined(CRYPTOPP_DEBUG)
- // 64-bit elements available at POWER7 with VSX, but vec_rl and vec_sl require POWER8
- return (uint32x4_p)VecRotateLeft<C>((uint64x2_p)vec);
- #else
- // C=0, 32, or 64 needs special handling. That is S32 and S64 below.
- enum {S64=C&63, S32=C&31, BR=(S64>=32)};
- // Get the low bits, shift them to high bits
- uint32x4_p t1 = VecShiftLeft<S32>(vec);
- // Get the high bits, shift them to low bits
- uint32x4_p t2 = VecShiftRight<32-S32>(vec);
- if (S64 == 0)
- {
- const uint8x16_p m = {0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15};
- return VecPermute(vec, m);
- }
- else if (S64 == 32)
- {
- const uint8x16_p m = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
- return VecPermute(vec, m);
- }
- else if (BR) // Big rotate amount?
- {
- const uint8x16_p m = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
- t1 = VecPermute(t1, m);
- }
- else
- {
- const uint8x16_p m = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
- t2 = VecPermute(t2, m);
- }
- return vec_or(t1, t2);
- #endif
- }
- /// \brief Rotate a vector left as if uint64x2_p
- /// \param vec the vector
- /// \return vector
- /// \details VecRotateLeft<8>() rotates each element in a vector
- /// by 8-bits. vec is rotated as if uint64x2_p. This specialization
- /// is used by algorithms like Speck128.
- /// \par Wraps
- /// vec_rl
- /// \since Crypto++ 8.3
- template<>
- inline uint32x4_p VecRotateLeft64<8>(const uint32x4_p vec)
- {
- #if (CRYPTOPP_BIG_ENDIAN)
- const uint8x16_p m = { 1,2,3,4, 5,6,7,0, 9,10,11,12, 13,14,15,8 };
- return VecPermute(vec, m);
- #else
- const uint8x16_p m = { 7,0,1,2, 3,4,5,6, 15,8,9,10, 11,12,13,14 };
- return VecPermute(vec, m);
- #endif
- }
- #if defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
- /// \brief Rotate a vector left as if uint64x2_p
- /// \tparam C rotate bit count
- /// \param vec the vector
- /// \return vector
- /// \details VecRotateLeft64() rotates each element in a vector by
- /// bit count. vec is rotated as if uint64x2_p.
- /// \par Wraps
- /// vec_rl
- /// \since Crypto++ 8.3
- template<unsigned int C>
- inline uint64x2_p VecRotateLeft64(const uint64x2_p vec)
- {
- // 64-bit elements available at POWER7 with VSX, but vec_rl and vec_sl require POWER8
- const uint64x2_p res = VecRotateLeft<C>(vec);
- #if defined(CRYPTOPP_DEBUG)
- // Test 32-bit rotate in debug builds while we are here.
- const uint32x4_p x = (uint32x4_p)vec;
- const uint32x4_p r = VecRotateLeft64<C>(x);
- CRYPTOPP_ASSERT(vec_all_eq((uint32x4_p)res, r) == 1);
- #endif
- return res;
- }
- #endif
- /// \brief Rotate a vector right as if uint64x2_p
- /// \tparam C rotate bit count
- /// \param vec the vector
- /// \return vector
- /// \details VecRotateRight64() rotates each element in a vector by
- /// bit count. vec is rotated as if uint64x2_p.
- /// \par Wraps
- /// vec_rl
- /// \since Crypto++ 8.3
- template<unsigned int C>
- inline uint32x4_p VecRotateRight64(const uint32x4_p vec)
- {
- #if defined(_ARCH_PWR8) && !defined(CRYPTOPP_DEBUG)
- // 64-bit elements available at POWER7 with VSX, but vec_rl and vec_sl require POWER8
- return (uint32x4_p)VecRotateRight<C>((uint64x2_p)vec);
- #else
- // C=0, 32, or 64 needs special handling. That is S32 and S64 below.
- enum {S64=C&63, S32=C&31, BR=(S64>=32)};
- // Get the low bits, shift them to high bits
- uint32x4_p t1 = VecShiftRight<S32>(vec);
- // Get the high bits, shift them to low bits
- uint32x4_p t2 = VecShiftLeft<32-S32>(vec);
- if (S64 == 0)
- {
- const uint8x16_p m = {0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15};
- return VecPermute(vec, m);
- }
- else if (S64 == 32)
- {
- const uint8x16_p m = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
- return VecPermute(vec, m);
- }
- else if (BR) // Big rotate amount?
- {
- const uint8x16_p m = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
- t1 = VecPermute(t1, m);
- }
- else
- {
- const uint8x16_p m = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
- t2 = VecPermute(t2, m);
- }
- return vec_or(t1, t2);
- #endif
- }
- /// \brief Rotate a vector right as if uint64x2_p
- /// \param vec the vector
- /// \return vector
- /// \details VecRotateRight64<8>() rotates each element in a vector
- /// by 8-bits. vec is rotated as if uint64x2_p. This specialization
- /// is used by algorithms like Speck128.
- /// \details vec is rotated as if uint64x2_p.
- /// \par Wraps
- /// vec_rl
- /// \since Crypto++ 8.3
- template<>
- inline uint32x4_p VecRotateRight64<8>(const uint32x4_p vec)
- {
- #if (CRYPTOPP_BIG_ENDIAN)
- const uint8x16_p m = { 7,0,1,2, 3,4,5,6, 15,8,9,10, 11,12,13,14 };
- return VecPermute(vec, m);
- #else
- const uint8x16_p m = { 1,2,3,4, 5,6,7,0, 9,10,11,12, 13,14,15,8 };
- return VecPermute(vec, m);
- #endif
- }
- #if defined(__VSX__) || defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
- /// \brief Rotate a vector right as if uint64x2_p
- /// \tparam C rotate bit count
- /// \param vec the vector
- /// \return vector
- /// \details VecRotateRight64() rotates each element in a vector by
- /// bit count. vec is rotated as if uint64x2_p.
- /// \par Wraps
- /// vec_rl
- /// \since Crypto++ 8.3
- template<unsigned int C>
- inline uint64x2_p VecRotateRight64(const uint64x2_p vec)
- {
- // 64-bit elements available at POWER7 with VSX, but vec_rl and vec_sl require POWER8
- const uint64x2_p res = VecRotateRight<C>(vec);
- #if defined(CRYPTOPP_DEBUG)
- // Test 32-bit rotate in debug builds while we are here.
- const uint32x4_p x = (uint32x4_p)vec;
- const uint32x4_p r = VecRotateRight64<C>(x);
- CRYPTOPP_ASSERT(vec_all_eq((uint32x4_p)res, r) == 1);
- #endif
- return res;
- }
- #endif
- /// \brief AND two vectors as if uint64x2_p
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \return vector
- /// \details VecAnd64() performs <tt>vec1 & vec2</tt>.
- /// vec2 is cast to the same type as vec1. The return vector
- /// is the same type as vec1.
- /// \details VecAnd64() is a convenience function that simply performs a VecAnd().
- /// \par Wraps
- /// vec_and
- /// \since Crypto++ 8.3
- template <class T1, class T2>
- inline T1 VecAnd64(const T1 vec1, const T2 vec2)
- {
- return (T1)vec_and(vec1, (T1)vec2);
- }
- /// \brief OR two vectors as if uint64x2_p
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \return vector
- /// \details VecOr64() performs <tt>vec1 | vec2</tt>.
- /// vec2 is cast to the same type as vec1. The return vector
- /// is the same type as vec1.
- /// \details VecOr64() is a convenience function that simply performs a VecOr().
- /// \par Wraps
- /// vec_or
- /// \since Crypto++ 8.3
- template <class T1, class T2>
- inline T1 VecOr64(const T1 vec1, const T2 vec2)
- {
- return (T1)vec_or(vec1, (T1)vec2);
- }
- /// \brief XOR two vectors as if uint64x2_p
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param vec1 the first vector
- /// \param vec2 the second vector
- /// \return vector
- /// \details VecXor64() performs <tt>vec1 ^ vec2</tt>.
- /// vec2 is cast to the same type as vec1. The return vector
- /// is the same type as vec1.
- /// \details VecXor64() is a convenience function that simply performs a VecXor().
- /// \par Wraps
- /// vec_xor
- /// \since Crypto++ 8.3
- template <class T1, class T2>
- inline T1 VecXor64(const T1 vec1, const T2 vec2)
- {
- return (T1)vec_xor(vec1, (T1)vec2);
- }
- /// \brief Broadcast 64-bit double word to a vector
- /// \param val the 64-bit value
- /// \return vector
- /// \par Wraps
- /// vec_splats
- /// \since Crypto++ 8.3
- inline uint32x4_p VecSplatWord64(word64 val)
- {
- #if defined(_ARCH_PWR8)
- // The PPC64 ABI says so.
- return (uint32x4_p)vec_splats((unsigned long long)val);
- #else
- const word64 x[2] = {val,val};
- return (uint32x4_p)VecLoad((const word32*)x);
- #endif
- }
- /// \brief Broadcast 64-bit element to a vector as if uint64x2_p
- /// \tparam the element number
- /// \param val the 64-bit value
- /// \return vector
- /// \par Wraps
- /// vec_splat
- /// \since Crypto++ 8.3
- template <unsigned int N>
- inline uint32x4_p VecSplatElement64(const uint32x4_p val)
- {
- #if defined(__VSX__) || defined(_ARCH_PWR8)
- return (uint32x4_p)vec_splat((uint64x2_p)val, N);
- #else
- enum {E=N&1};
- if (E == 0)
- {
- const uint8x16_p m = {0,1,2,3, 4,5,6,7, 0,1,2,3, 4,5,6,7};
- return (uint32x4_p)vec_perm(val, val, m);
- }
- else // (E == 1)
- {
- const uint8x16_p m = {8,9,10,11, 12,13,14,15, 8,9,10,11, 12,13,14,15};
- return (uint32x4_p)vec_perm(val, val, m);
- }
- #endif
- }
- #if defined(__VSX__) || defined(_ARCH_PWR8) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
- /// \brief Broadcast 64-bit element to a vector
- /// \tparam the element number
- /// \param val the 64-bit value
- /// \return vector
- /// \since Crypto++ 8.3
- template <unsigned int N>
- inline uint64x2_p VecSplatElement64(const uint64x2_p val)
- {
- return vec_splat(val, N);
- }
- #endif
- //@}
- //////////////////////// Power8 Crypto ////////////////////////
- // __CRYPTO__ alone is not enough. Clang will define __CRYPTO__
- // when it is not available, like with Power7. Sigh...
- #if (defined(_ARCH_PWR8) && defined(__CRYPTO__)) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
- /// \name POLYNOMIAL MULTIPLICATION
- //@{
- /// \brief Polynomial multiplication
- /// \param a the first term
- /// \param b the second term
- /// \return vector product
- /// \details VecPolyMultiply() performs polynomial multiplication. POWER8
- /// polynomial multiplication multiplies the high and low terms, and then
- /// XOR's the high and low products. That is, the result is <tt>ah*bh XOR
- /// al*bl</tt>. It is different behavior than Intel polynomial
- /// multiplication. To obtain a single product without the XOR, then set
- /// one of the high or low terms to 0. For example, setting <tt>ah=0</tt>
- /// results in <tt>0*bh XOR al*bl = al*bl</tt>.
- /// \par Wraps
- /// __vpmsumw, __builtin_altivec_crypto_vpmsumw and __builtin_crypto_vpmsumw.
- /// \since Crypto++ 8.1
- inline uint32x4_p VecPolyMultiply(const uint32x4_p& a, const uint32x4_p& b)
- {
- #if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
- return __vpmsumw (a, b);
- #elif defined(__clang__)
- return __builtin_altivec_crypto_vpmsumw (a, b);
- #else
- return __builtin_crypto_vpmsumw (a, b);
- #endif
- }
- /// \brief Polynomial multiplication
- /// \param a the first term
- /// \param b the second term
- /// \return vector product
- /// \details VecPolyMultiply() performs polynomial multiplication. POWER8
- /// polynomial multiplication multiplies the high and low terms, and then
- /// XOR's the high and low products. That is, the result is <tt>ah*bh XOR
- /// al*bl</tt>. It is different behavior than Intel polynomial
- /// multiplication. To obtain a single product without the XOR, then set
- /// one of the high or low terms to 0. For example, setting <tt>ah=0</tt>
- /// results in <tt>0*bh XOR al*bl = al*bl</tt>.
- /// \par Wraps
- /// __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
- /// \since Crypto++ 8.1
- inline uint64x2_p VecPolyMultiply(const uint64x2_p& a, const uint64x2_p& b)
- {
- #if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
- return __vpmsumd (a, b);
- #elif defined(__clang__)
- return __builtin_altivec_crypto_vpmsumd (a, b);
- #else
- return __builtin_crypto_vpmsumd (a, b);
- #endif
- }
- /// \brief Polynomial multiplication
- /// \param a the first term
- /// \param b the second term
- /// \return vector product
- /// \details VecIntelMultiply00() performs polynomial multiplication and presents
- /// the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x00)</tt>.
- /// The <tt>0x00</tt> indicates the low 64-bits of <tt>a</tt> and <tt>b</tt>
- /// are multiplied.
- /// \note An Intel XMM register is composed of 128-bits. The leftmost bit
- /// is MSB and numbered 127, while the rightmost bit is LSB and numbered 0.
- /// \par Wraps
- /// __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
- /// \since Crypto++ 8.0
- inline uint64x2_p VecIntelMultiply00(const uint64x2_p& a, const uint64x2_p& b)
- {
- #if defined(CRYPTOPP_BIG_ENDIAN)
- return VecSwapWords(VecPolyMultiply(VecGetHigh(a), VecGetHigh(b)));
- #else
- return VecPolyMultiply(VecGetHigh(a), VecGetHigh(b));
- #endif
- }
- /// \brief Polynomial multiplication
- /// \param a the first term
- /// \param b the second term
- /// \return vector product
- /// \details VecIntelMultiply01 performs() polynomial multiplication and presents
- /// the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x01)</tt>.
- /// The <tt>0x01</tt> indicates the low 64-bits of <tt>a</tt> and high
- /// 64-bits of <tt>b</tt> are multiplied.
- /// \note An Intel XMM register is composed of 128-bits. The leftmost bit
- /// is MSB and numbered 127, while the rightmost bit is LSB and numbered 0.
- /// \par Wraps
- /// __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
- /// \since Crypto++ 8.0
- inline uint64x2_p VecIntelMultiply01(const uint64x2_p& a, const uint64x2_p& b)
- {
- #if defined(CRYPTOPP_BIG_ENDIAN)
- return VecSwapWords(VecPolyMultiply(a, VecGetHigh(b)));
- #else
- return VecPolyMultiply(a, VecGetHigh(b));
- #endif
- }
- /// \brief Polynomial multiplication
- /// \param a the first term
- /// \param b the second term
- /// \return vector product
- /// \details VecIntelMultiply10() performs polynomial multiplication and presents
- /// the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x10)</tt>.
- /// The <tt>0x10</tt> indicates the high 64-bits of <tt>a</tt> and low
- /// 64-bits of <tt>b</tt> are multiplied.
- /// \note An Intel XMM register is composed of 128-bits. The leftmost bit
- /// is MSB and numbered 127, while the rightmost bit is LSB and numbered 0.
- /// \par Wraps
- /// __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
- /// \since Crypto++ 8.0
- inline uint64x2_p VecIntelMultiply10(const uint64x2_p& a, const uint64x2_p& b)
- {
- #if defined(CRYPTOPP_BIG_ENDIAN)
- return VecSwapWords(VecPolyMultiply(VecGetHigh(a), b));
- #else
- return VecPolyMultiply(VecGetHigh(a), b);
- #endif
- }
- /// \brief Polynomial multiplication
- /// \param a the first term
- /// \param b the second term
- /// \return vector product
- /// \details VecIntelMultiply11() performs polynomial multiplication and presents
- /// the result like Intel's <tt>c = _mm_clmulepi64_si128(a, b, 0x11)</tt>.
- /// The <tt>0x11</tt> indicates the high 64-bits of <tt>a</tt> and <tt>b</tt>
- /// are multiplied.
- /// \note An Intel XMM register is composed of 128-bits. The leftmost bit
- /// is MSB and numbered 127, while the rightmost bit is LSB and numbered 0.
- /// \par Wraps
- /// __vpmsumd, __builtin_altivec_crypto_vpmsumd and __builtin_crypto_vpmsumd.
- /// \since Crypto++ 8.0
- inline uint64x2_p VecIntelMultiply11(const uint64x2_p& a, const uint64x2_p& b)
- {
- #if defined(CRYPTOPP_BIG_ENDIAN)
- return VecSwapWords(VecPolyMultiply(VecGetLow(a), b));
- #else
- return VecPolyMultiply(VecGetLow(a), b);
- #endif
- }
- //@}
- /// \name AES ENCRYPTION
- //@{
- /// \brief One round of AES encryption
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param state the state vector
- /// \param key the subkey vector
- /// \details VecEncrypt() performs one round of AES encryption of state
- /// using subkey key. The return vector is the same type as state.
- /// \details VecEncrypt() is available on POWER8 and above.
- /// \par Wraps
- /// __vcipher, __builtin_altivec_crypto_vcipher, __builtin_crypto_vcipher
- /// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
- template <class T1, class T2>
- inline T1 VecEncrypt(const T1 state, const T2 key)
- {
- #if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
- return (T1)__vcipher((uint8x16_p)state, (uint8x16_p)key);
- #elif defined(__clang__)
- return (T1)__builtin_altivec_crypto_vcipher((uint64x2_p)state, (uint64x2_p)key);
- #elif defined(__GNUC__)
- return (T1)__builtin_crypto_vcipher((uint64x2_p)state, (uint64x2_p)key);
- #else
- CRYPTOPP_ASSERT(0);
- #endif
- }
- /// \brief Final round of AES encryption
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param state the state vector
- /// \param key the subkey vector
- /// \details VecEncryptLast() performs the final round of AES encryption
- /// of state using subkey key. The return vector is the same type as state.
- /// \details VecEncryptLast() is available on POWER8 and above.
- /// \par Wraps
- /// __vcipherlast, __builtin_altivec_crypto_vcipherlast, __builtin_crypto_vcipherlast
- /// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
- template <class T1, class T2>
- inline T1 VecEncryptLast(const T1 state, const T2 key)
- {
- #if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
- return (T1)__vcipherlast((uint8x16_p)state, (uint8x16_p)key);
- #elif defined(__clang__)
- return (T1)__builtin_altivec_crypto_vcipherlast((uint64x2_p)state, (uint64x2_p)key);
- #elif defined(__GNUC__)
- return (T1)__builtin_crypto_vcipherlast((uint64x2_p)state, (uint64x2_p)key);
- #else
- CRYPTOPP_ASSERT(0);
- #endif
- }
- /// \brief One round of AES decryption
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param state the state vector
- /// \param key the subkey vector
- /// \details VecDecrypt() performs one round of AES decryption of state
- /// using subkey key. The return vector is the same type as state.
- /// \details VecDecrypt() is available on POWER8 and above.
- /// \par Wraps
- /// __vncipher, __builtin_altivec_crypto_vncipher, __builtin_crypto_vncipher
- /// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
- template <class T1, class T2>
- inline T1 VecDecrypt(const T1 state, const T2 key)
- {
- #if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
- return (T1)__vncipher((uint8x16_p)state, (uint8x16_p)key);
- #elif defined(__clang__)
- return (T1)__builtin_altivec_crypto_vncipher((uint64x2_p)state, (uint64x2_p)key);
- #elif defined(__GNUC__)
- return (T1)__builtin_crypto_vncipher((uint64x2_p)state, (uint64x2_p)key);
- #else
- CRYPTOPP_ASSERT(0);
- #endif
- }
- /// \brief Final round of AES decryption
- /// \tparam T1 vector type
- /// \tparam T2 vector type
- /// \param state the state vector
- /// \param key the subkey vector
- /// \details VecDecryptLast() performs the final round of AES decryption
- /// of state using subkey key. The return vector is the same type as state.
- /// \details VecDecryptLast() is available on POWER8 and above.
- /// \par Wraps
- /// __vncipherlast, __builtin_altivec_crypto_vncipherlast, __builtin_crypto_vncipherlast
- /// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
- template <class T1, class T2>
- inline T1 VecDecryptLast(const T1 state, const T2 key)
- {
- #if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
- return (T1)__vncipherlast((uint8x16_p)state, (uint8x16_p)key);
- #elif defined(__clang__)
- return (T1)__builtin_altivec_crypto_vncipherlast((uint64x2_p)state, (uint64x2_p)key);
- #elif defined(__GNUC__)
- return (T1)__builtin_crypto_vncipherlast((uint64x2_p)state, (uint64x2_p)key);
- #else
- CRYPTOPP_ASSERT(0);
- #endif
- }
- //@}
- /// \name SHA DIGESTS
- //@{
- /// \brief SHA256 Sigma functions
- /// \tparam func function
- /// \tparam fmask function mask
- /// \tparam T vector type
- /// \param data the block to transform
- /// \details VecSHA256() selects sigma0, sigma1, Sigma0, Sigma1 based on
- /// func and fmask. The return vector is the same type as data.
- /// \details VecSHA256() is available on POWER8 and above.
- /// \par Wraps
- /// __vshasigmaw, __builtin_altivec_crypto_vshasigmaw, __builtin_crypto_vshasigmaw
- /// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
- template <int func, int fmask, class T>
- inline T VecSHA256(const T data)
- {
- #if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
- return (T)__vshasigmaw((uint32x4_p)data, func, fmask);
- #elif defined(__clang__)
- return (T)__builtin_altivec_crypto_vshasigmaw((uint32x4_p)data, func, fmask);
- #elif defined(__GNUC__)
- return (T)__builtin_crypto_vshasigmaw((uint32x4_p)data, func, fmask);
- #else
- CRYPTOPP_ASSERT(0);
- #endif
- }
- /// \brief SHA512 Sigma functions
- /// \tparam func function
- /// \tparam fmask function mask
- /// \tparam T vector type
- /// \param data the block to transform
- /// \details VecSHA512() selects sigma0, sigma1, Sigma0, Sigma1 based on
- /// func and fmask. The return vector is the same type as data.
- /// \details VecSHA512() is available on POWER8 and above.
- /// \par Wraps
- /// __vshasigmad, __builtin_altivec_crypto_vshasigmad, __builtin_crypto_vshasigmad
- /// \since GCC and XLC since Crypto++ 6.0, LLVM Clang since Crypto++ 8.0
- template <int func, int fmask, class T>
- inline T VecSHA512(const T data)
- {
- #if defined(__ibmxl__) || (defined(_AIX) && defined(__xlC__))
- return (T)__vshasigmad((uint64x2_p)data, func, fmask);
- #elif defined(__clang__)
- return (T)__builtin_altivec_crypto_vshasigmad((uint64x2_p)data, func, fmask);
- #elif defined(__GNUC__)
- return (T)__builtin_crypto_vshasigmad((uint64x2_p)data, func, fmask);
- #else
- CRYPTOPP_ASSERT(0);
- #endif
- }
- //@}
- #endif // __CRYPTO__
- #endif // _ALTIVEC_
- NAMESPACE_END
- #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
- # pragma GCC diagnostic pop
- #endif
- #endif // CRYPTOPP_PPC_CRYPTO_H
|