颐和api

StringHelper.cs 7.3KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. using System.Globalization;
  2. using System.Collections.Generic;
  3. using System.Linq;
  4. namespace MadRunFabric.Common
  5. {
  6. /// <summary>
  7. /// 字符串帮助类
  8. /// </summary>
  9. public static class StringHelper
  10. {
  11. /// <summary>
  12. /// join 不会返回空
  13. /// </summary>
  14. public static string Join(string spliter, IList<string> list)
  15. {
  16. string str = string.Empty;
  17. if (!ValidateHelper.IsPlumpList(list)) { return str; }
  18. list.ToList().ForEach(delegate (string s)
  19. {
  20. s = ConvertHelper.GetString(s);
  21. str += ((str == string.Empty) ? string.Empty : spliter) + s;
  22. });
  23. return str;
  24. }
  25. /// <summary>
  26. /// 可能返回空
  27. /// </summary>
  28. /// <param name="str"></param>
  29. /// <param name="spliter"></param>
  30. /// <returns></returns>
  31. public static List<string> Split(string str, params char[] spliter)
  32. {
  33. return ConvertHelper.GetString(str).Split(spliter).ToList();
  34. }
  35. #region 截取字符串
  36. /// <summary>
  37. /// 截取字符串
  38. /// </summary>
  39. public static string SubString(string str, int startIndex, int length)
  40. {
  41. str = ConvertHelper.GetString(str);
  42. if (str.Length > (startIndex + length))
  43. {
  44. return str.Substring(startIndex, length);
  45. }
  46. return str;
  47. }
  48. /// <summary>
  49. /// 截取字符串
  50. /// </summary>
  51. public static string SubString(string str, int length)
  52. {
  53. return SubString(str, 0, length);
  54. }
  55. #endregion
  56. #region 移除前导/后导字符串
  57. /// <summary>
  58. /// 移除前导字符串
  59. /// </summary>
  60. public static string TrimStart(string str, string trimStr, bool ignoreCase = true)
  61. {
  62. str = ConvertHelper.GetString(str);
  63. trimStr = ConvertHelper.GetString(trimStr);
  64. while (str.StartsWith(trimStr, ignoreCase, CultureInfo.CurrentCulture))
  65. {
  66. str = str.Remove(0, trimStr.Length);
  67. }
  68. return str;
  69. }
  70. /// <summary>
  71. /// 移除后导字符串
  72. /// </summary>
  73. public static string TrimEnd(string str, string trimStr, bool ignoreCase = true)
  74. {
  75. str = ConvertHelper.GetString(str);
  76. trimStr = ConvertHelper.GetString(trimStr);
  77. while (str.EndsWith(trimStr, ignoreCase, CultureInfo.CurrentCulture))
  78. {
  79. str = str.Substring(0, str.Length - trimStr.Length);
  80. }
  81. return str;
  82. }
  83. /// <summary>
  84. /// 移除前导和后导字符串
  85. /// </summary>
  86. public static string Trim(string str, string trimStr = " ", bool ignoreCase = true)
  87. {
  88. return TrimStart(TrimEnd(str, trimStr, ignoreCase), trimStr, ignoreCase);
  89. }
  90. #endregion
  91. #region 字符串相似度比较
  92. /// <summary>
  93. /// 计算字符相似度
  94. /// </summary>
  95. /// <param name="str1"></param>
  96. /// <param name="str2"></param>
  97. /// <returns></returns>
  98. private static int Levenshtein_Distance(string str1, string str2)
  99. {
  100. int[,] Matrix;
  101. int n = str1.Length;
  102. int m = str2.Length;
  103. int temp = 0;
  104. char ch1;
  105. char ch2;
  106. int i = 0;
  107. int j = 0;
  108. if (n == 0)
  109. {
  110. return m;
  111. }
  112. if (m == 0)
  113. {
  114. return n;
  115. }
  116. Matrix = new int[n + 1, m + 1];
  117. for (i = 0; i <= n; i++)
  118. {
  119. //初始化第一列
  120. Matrix[i, 0] = i;
  121. }
  122. for (j = 0; j <= m; j++)
  123. {
  124. //初始化第一行
  125. Matrix[0, j] = j;
  126. }
  127. for (i = 1; i <= n; i++)
  128. {
  129. ch1 = str1[i - 1];
  130. for (j = 1; j <= m; j++)
  131. {
  132. ch2 = str2[j - 1];
  133. if (ch1.Equals(ch2))
  134. {
  135. temp = 0;
  136. }
  137. else
  138. {
  139. temp = 1;
  140. }
  141. Matrix[i, j] = new int[] { Matrix[i - 1, j] + 1, Matrix[i, j - 1] + 1, Matrix[i - 1, j - 1] + temp }.Min();
  142. }
  143. }
  144. return Matrix[n, m];
  145. }
  146. /// <summary>
  147. /// 计算字符串相似度
  148. /// </summary>
  149. /// <param name="str1"></param>
  150. /// <param name="str2"></param>
  151. /// <returns></returns>
  152. public static decimal LevenshteinDistancePercent(string str1, string str2)
  153. {
  154. int val = Levenshtein_Distance(str1, str2);
  155. return 1 - (decimal)val / new int[] { str1.Length, str2.Length }.Max();
  156. }
  157. #endregion
  158. #region 计算匹配率/相似度
  159. /// <summary>
  160. /// 计算相似度。
  161. /// </summary>
  162. public static SimilarityResult SimilarityRate(string str1, string str2)
  163. {
  164. var result = new SimilarityResult();
  165. var arrChar1 = str1.ToCharArray();
  166. var arrChar2 = str2.ToCharArray();
  167. var computeTimes = 0;
  168. var row = arrChar1.Length + 1;
  169. var column = arrChar2.Length + 1;
  170. var matrix = new int[row, column];
  171. //初始化矩阵的第一行和第一列
  172. for (var i = 0; i < column; i++)
  173. {
  174. matrix[0, i] = i;
  175. }
  176. for (var i = 0; i < row; i++)
  177. {
  178. matrix[i, 0] = i;
  179. }
  180. for (var i = 1; i < row; i++)
  181. {
  182. for (var j = 1; j < column; j++)
  183. {
  184. var intCost = 0;
  185. intCost = arrChar1[i - 1] == arrChar2[j - 1] ? 0 : 1;
  186. //关键步骤,计算当前位置值为左边+1、上面+1、左上角+intCost中的最小值
  187. //循环遍历到最后_Matrix[_Row - 1, _Column - 1]即为两个字符串的距离
  188. matrix[i, j] = new int[] { matrix[i - 1, j] + 1, matrix[i, j - 1] + 1, matrix[i - 1, j - 1] + intCost }.Min();
  189. computeTimes++;
  190. }
  191. }
  192. //相似率 移动次数小于最长的字符串长度的20%算同一题
  193. var intLength = row > column ? row : column;
  194. //_Result.Rate = (1 - (double)_Matrix[_Row - 1, _Column - 1] / intLength).ToString().Substring(0, 6);
  195. result.Rate = (1 - (double)matrix[row - 1, column - 1] / (intLength - 1));
  196. result.ComputeTimes = computeTimes.ToString() + " 距离为:" + matrix[row - 1, column - 1].ToString();
  197. return result;
  198. }
  199. /// <summary>
  200. /// 计算结果
  201. /// </summary>
  202. public struct SimilarityResult
  203. {
  204. /// <summary>
  205. /// 相似度,0.54即54%。
  206. /// </summary>
  207. public double Rate;
  208. /// <summary>
  209. /// 对比次数
  210. /// </summary>
  211. public string ComputeTimes;
  212. }
  213. #endregion
  214. }
  215. }