| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755 |
- // Copyright (c) 2005 Tom Wu
- // All Rights Reserved.
- // See "LICENSE" for details.
- // Basic JavaScript BN library - subset useful for RSA encryption.
- import { cbit, int2char, lbit, op_and, op_andnot, op_or, op_xor } from "./util";
- // Bits per digit
- var dbits;
- // JavaScript engine analysis
- var canary = 0xdeadbeefcafe;
- var j_lm = ((canary & 0xffffff) == 0xefcafe);
- //#region
- var lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997];
- var lplim = (1 << 26) / lowprimes[lowprimes.length - 1];
- //#endregion
- // (public) Constructor
- var BigInteger = /** @class */ (function () {
- function BigInteger(a, b, c) {
- if (a != null) {
- if ("number" == typeof a) {
- this.fromNumber(a, b, c);
- }
- else if (b == null && "string" != typeof a) {
- this.fromString(a, 256);
- }
- else {
- this.fromString(a, b);
- }
- }
- }
- //#region PUBLIC
- // BigInteger.prototype.toString = bnToString;
- // (public) return string representation in given radix
- BigInteger.prototype.toString = function (b) {
- if (this.s < 0) {
- return "-" + this.negate().toString(b);
- }
- var k;
- if (b == 16) {
- k = 4;
- }
- else if (b == 8) {
- k = 3;
- }
- else if (b == 2) {
- k = 1;
- }
- else if (b == 32) {
- k = 5;
- }
- else if (b == 4) {
- k = 2;
- }
- else {
- return this.toRadix(b);
- }
- var km = (1 << k) - 1;
- var d;
- var m = false;
- var r = "";
- var i = this.t;
- var p = this.DB - (i * this.DB) % k;
- if (i-- > 0) {
- if (p < this.DB && (d = this[i] >> p) > 0) {
- m = true;
- r = int2char(d);
- }
- while (i >= 0) {
- if (p < k) {
- d = (this[i] & ((1 << p) - 1)) << (k - p);
- d |= this[--i] >> (p += this.DB - k);
- }
- else {
- d = (this[i] >> (p -= k)) & km;
- if (p <= 0) {
- p += this.DB;
- --i;
- }
- }
- if (d > 0) {
- m = true;
- }
- if (m) {
- r += int2char(d);
- }
- }
- }
- return m ? r : "0";
- };
- // BigInteger.prototype.negate = bnNegate;
- // (public) -this
- BigInteger.prototype.negate = function () {
- var r = nbi();
- BigInteger.ZERO.subTo(this, r);
- return r;
- };
- // BigInteger.prototype.abs = bnAbs;
- // (public) |this|
- BigInteger.prototype.abs = function () {
- return (this.s < 0) ? this.negate() : this;
- };
- // BigInteger.prototype.compareTo = bnCompareTo;
- // (public) return + if this > a, - if this < a, 0 if equal
- BigInteger.prototype.compareTo = function (a) {
- var r = this.s - a.s;
- if (r != 0) {
- return r;
- }
- var i = this.t;
- r = i - a.t;
- if (r != 0) {
- return (this.s < 0) ? -r : r;
- }
- while (--i >= 0) {
- if ((r = this[i] - a[i]) != 0) {
- return r;
- }
- }
- return 0;
- };
- // BigInteger.prototype.bitLength = bnBitLength;
- // (public) return the number of bits in "this"
- BigInteger.prototype.bitLength = function () {
- if (this.t <= 0) {
- return 0;
- }
- return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM));
- };
- // BigInteger.prototype.mod = bnMod;
- // (public) this mod a
- BigInteger.prototype.mod = function (a) {
- var r = nbi();
- this.abs().divRemTo(a, null, r);
- if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) {
- a.subTo(r, r);
- }
- return r;
- };
- // BigInteger.prototype.modPowInt = bnModPowInt;
- // (public) this^e % m, 0 <= e < 2^32
- BigInteger.prototype.modPowInt = function (e, m) {
- var z;
- if (e < 256 || m.isEven()) {
- z = new Classic(m);
- }
- else {
- z = new Montgomery(m);
- }
- return this.exp(e, z);
- };
- // BigInteger.prototype.clone = bnClone;
- // (public)
- BigInteger.prototype.clone = function () {
- var r = nbi();
- this.copyTo(r);
- return r;
- };
- // BigInteger.prototype.intValue = bnIntValue;
- // (public) return value as integer
- BigInteger.prototype.intValue = function () {
- if (this.s < 0) {
- if (this.t == 1) {
- return this[0] - this.DV;
- }
- else if (this.t == 0) {
- return -1;
- }
- }
- else if (this.t == 1) {
- return this[0];
- }
- else if (this.t == 0) {
- return 0;
- }
- // assumes 16 < DB < 32
- return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0];
- };
- // BigInteger.prototype.byteValue = bnByteValue;
- // (public) return value as byte
- BigInteger.prototype.byteValue = function () {
- return (this.t == 0) ? this.s : (this[0] << 24) >> 24;
- };
- // BigInteger.prototype.shortValue = bnShortValue;
- // (public) return value as short (assumes DB>=16)
- BigInteger.prototype.shortValue = function () {
- return (this.t == 0) ? this.s : (this[0] << 16) >> 16;
- };
- // BigInteger.prototype.signum = bnSigNum;
- // (public) 0 if this == 0, 1 if this > 0
- BigInteger.prototype.signum = function () {
- if (this.s < 0) {
- return -1;
- }
- else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) {
- return 0;
- }
- else {
- return 1;
- }
- };
- // BigInteger.prototype.toByteArray = bnToByteArray;
- // (public) convert to bigendian byte array
- BigInteger.prototype.toByteArray = function () {
- var i = this.t;
- var r = [];
- r[0] = this.s;
- var p = this.DB - (i * this.DB) % 8;
- var d;
- var k = 0;
- if (i-- > 0) {
- if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p) {
- r[k++] = d | (this.s << (this.DB - p));
- }
- while (i >= 0) {
- if (p < 8) {
- d = (this[i] & ((1 << p) - 1)) << (8 - p);
- d |= this[--i] >> (p += this.DB - 8);
- }
- else {
- d = (this[i] >> (p -= 8)) & 0xff;
- if (p <= 0) {
- p += this.DB;
- --i;
- }
- }
- if ((d & 0x80) != 0) {
- d |= -256;
- }
- if (k == 0 && (this.s & 0x80) != (d & 0x80)) {
- ++k;
- }
- if (k > 0 || d != this.s) {
- r[k++] = d;
- }
- }
- }
- return r;
- };
- // BigInteger.prototype.equals = bnEquals;
- BigInteger.prototype.equals = function (a) {
- return (this.compareTo(a) == 0);
- };
- // BigInteger.prototype.min = bnMin;
- BigInteger.prototype.min = function (a) {
- return (this.compareTo(a) < 0) ? this : a;
- };
- // BigInteger.prototype.max = bnMax;
- BigInteger.prototype.max = function (a) {
- return (this.compareTo(a) > 0) ? this : a;
- };
- // BigInteger.prototype.and = bnAnd;
- BigInteger.prototype.and = function (a) {
- var r = nbi();
- this.bitwiseTo(a, op_and, r);
- return r;
- };
- // BigInteger.prototype.or = bnOr;
- BigInteger.prototype.or = function (a) {
- var r = nbi();
- this.bitwiseTo(a, op_or, r);
- return r;
- };
- // BigInteger.prototype.xor = bnXor;
- BigInteger.prototype.xor = function (a) {
- var r = nbi();
- this.bitwiseTo(a, op_xor, r);
- return r;
- };
- // BigInteger.prototype.andNot = bnAndNot;
- BigInteger.prototype.andNot = function (a) {
- var r = nbi();
- this.bitwiseTo(a, op_andnot, r);
- return r;
- };
- // BigInteger.prototype.not = bnNot;
- // (public) ~this
- BigInteger.prototype.not = function () {
- var r = nbi();
- for (var i = 0; i < this.t; ++i) {
- r[i] = this.DM & ~this[i];
- }
- r.t = this.t;
- r.s = ~this.s;
- return r;
- };
- // BigInteger.prototype.shiftLeft = bnShiftLeft;
- // (public) this << n
- BigInteger.prototype.shiftLeft = function (n) {
- var r = nbi();
- if (n < 0) {
- this.rShiftTo(-n, r);
- }
- else {
- this.lShiftTo(n, r);
- }
- return r;
- };
- // BigInteger.prototype.shiftRight = bnShiftRight;
- // (public) this >> n
- BigInteger.prototype.shiftRight = function (n) {
- var r = nbi();
- if (n < 0) {
- this.lShiftTo(-n, r);
- }
- else {
- this.rShiftTo(n, r);
- }
- return r;
- };
- // BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
- // (public) returns index of lowest 1-bit (or -1 if none)
- BigInteger.prototype.getLowestSetBit = function () {
- for (var i = 0; i < this.t; ++i) {
- if (this[i] != 0) {
- return i * this.DB + lbit(this[i]);
- }
- }
- if (this.s < 0) {
- return this.t * this.DB;
- }
- return -1;
- };
- // BigInteger.prototype.bitCount = bnBitCount;
- // (public) return number of set bits
- BigInteger.prototype.bitCount = function () {
- var r = 0;
- var x = this.s & this.DM;
- for (var i = 0; i < this.t; ++i) {
- r += cbit(this[i] ^ x);
- }
- return r;
- };
- // BigInteger.prototype.testBit = bnTestBit;
- // (public) true iff nth bit is set
- BigInteger.prototype.testBit = function (n) {
- var j = Math.floor(n / this.DB);
- if (j >= this.t) {
- return (this.s != 0);
- }
- return ((this[j] & (1 << (n % this.DB))) != 0);
- };
- // BigInteger.prototype.setBit = bnSetBit;
- // (public) this | (1<<n)
- BigInteger.prototype.setBit = function (n) {
- return this.changeBit(n, op_or);
- };
- // BigInteger.prototype.clearBit = bnClearBit;
- // (public) this & ~(1<<n)
- BigInteger.prototype.clearBit = function (n) {
- return this.changeBit(n, op_andnot);
- };
- // BigInteger.prototype.flipBit = bnFlipBit;
- // (public) this ^ (1<<n)
- BigInteger.prototype.flipBit = function (n) {
- return this.changeBit(n, op_xor);
- };
- // BigInteger.prototype.add = bnAdd;
- // (public) this + a
- BigInteger.prototype.add = function (a) {
- var r = nbi();
- this.addTo(a, r);
- return r;
- };
- // BigInteger.prototype.subtract = bnSubtract;
- // (public) this - a
- BigInteger.prototype.subtract = function (a) {
- var r = nbi();
- this.subTo(a, r);
- return r;
- };
- // BigInteger.prototype.multiply = bnMultiply;
- // (public) this * a
- BigInteger.prototype.multiply = function (a) {
- var r = nbi();
- this.multiplyTo(a, r);
- return r;
- };
- // BigInteger.prototype.divide = bnDivide;
- // (public) this / a
- BigInteger.prototype.divide = function (a) {
- var r = nbi();
- this.divRemTo(a, r, null);
- return r;
- };
- // BigInteger.prototype.remainder = bnRemainder;
- // (public) this % a
- BigInteger.prototype.remainder = function (a) {
- var r = nbi();
- this.divRemTo(a, null, r);
- return r;
- };
- // BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
- // (public) [this/a,this%a]
- BigInteger.prototype.divideAndRemainder = function (a) {
- var q = nbi();
- var r = nbi();
- this.divRemTo(a, q, r);
- return [q, r];
- };
- // BigInteger.prototype.modPow = bnModPow;
- // (public) this^e % m (HAC 14.85)
- BigInteger.prototype.modPow = function (e, m) {
- var i = e.bitLength();
- var k;
- var r = nbv(1);
- var z;
- if (i <= 0) {
- return r;
- }
- else if (i < 18) {
- k = 1;
- }
- else if (i < 48) {
- k = 3;
- }
- else if (i < 144) {
- k = 4;
- }
- else if (i < 768) {
- k = 5;
- }
- else {
- k = 6;
- }
- if (i < 8) {
- z = new Classic(m);
- }
- else if (m.isEven()) {
- z = new Barrett(m);
- }
- else {
- z = new Montgomery(m);
- }
- // precomputation
- var g = [];
- var n = 3;
- var k1 = k - 1;
- var km = (1 << k) - 1;
- g[1] = z.convert(this);
- if (k > 1) {
- var g2 = nbi();
- z.sqrTo(g[1], g2);
- while (n <= km) {
- g[n] = nbi();
- z.mulTo(g2, g[n - 2], g[n]);
- n += 2;
- }
- }
- var j = e.t - 1;
- var w;
- var is1 = true;
- var r2 = nbi();
- var t;
- i = nbits(e[j]) - 1;
- while (j >= 0) {
- if (i >= k1) {
- w = (e[j] >> (i - k1)) & km;
- }
- else {
- w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i);
- if (j > 0) {
- w |= e[j - 1] >> (this.DB + i - k1);
- }
- }
- n = k;
- while ((w & 1) == 0) {
- w >>= 1;
- --n;
- }
- if ((i -= n) < 0) {
- i += this.DB;
- --j;
- }
- if (is1) { // ret == 1, don't bother squaring or multiplying it
- g[w].copyTo(r);
- is1 = false;
- }
- else {
- while (n > 1) {
- z.sqrTo(r, r2);
- z.sqrTo(r2, r);
- n -= 2;
- }
- if (n > 0) {
- z.sqrTo(r, r2);
- }
- else {
- t = r;
- r = r2;
- r2 = t;
- }
- z.mulTo(r2, g[w], r);
- }
- while (j >= 0 && (e[j] & (1 << i)) == 0) {
- z.sqrTo(r, r2);
- t = r;
- r = r2;
- r2 = t;
- if (--i < 0) {
- i = this.DB - 1;
- --j;
- }
- }
- }
- return z.revert(r);
- };
- // BigInteger.prototype.modInverse = bnModInverse;
- // (public) 1/this % m (HAC 14.61)
- BigInteger.prototype.modInverse = function (m) {
- var ac = m.isEven();
- if ((this.isEven() && ac) || m.signum() == 0) {
- return BigInteger.ZERO;
- }
- var u = m.clone();
- var v = this.clone();
- var a = nbv(1);
- var b = nbv(0);
- var c = nbv(0);
- var d = nbv(1);
- while (u.signum() != 0) {
- while (u.isEven()) {
- u.rShiftTo(1, u);
- if (ac) {
- if (!a.isEven() || !b.isEven()) {
- a.addTo(this, a);
- b.subTo(m, b);
- }
- a.rShiftTo(1, a);
- }
- else if (!b.isEven()) {
- b.subTo(m, b);
- }
- b.rShiftTo(1, b);
- }
- while (v.isEven()) {
- v.rShiftTo(1, v);
- if (ac) {
- if (!c.isEven() || !d.isEven()) {
- c.addTo(this, c);
- d.subTo(m, d);
- }
- c.rShiftTo(1, c);
- }
- else if (!d.isEven()) {
- d.subTo(m, d);
- }
- d.rShiftTo(1, d);
- }
- if (u.compareTo(v) >= 0) {
- u.subTo(v, u);
- if (ac) {
- a.subTo(c, a);
- }
- b.subTo(d, b);
- }
- else {
- v.subTo(u, v);
- if (ac) {
- c.subTo(a, c);
- }
- d.subTo(b, d);
- }
- }
- if (v.compareTo(BigInteger.ONE) != 0) {
- return BigInteger.ZERO;
- }
- if (d.compareTo(m) >= 0) {
- return d.subtract(m);
- }
- if (d.signum() < 0) {
- d.addTo(m, d);
- }
- else {
- return d;
- }
- if (d.signum() < 0) {
- return d.add(m);
- }
- else {
- return d;
- }
- };
- // BigInteger.prototype.pow = bnPow;
- // (public) this^e
- BigInteger.prototype.pow = function (e) {
- return this.exp(e, new NullExp());
- };
- // BigInteger.prototype.gcd = bnGCD;
- // (public) gcd(this,a) (HAC 14.54)
- BigInteger.prototype.gcd = function (a) {
- var x = (this.s < 0) ? this.negate() : this.clone();
- var y = (a.s < 0) ? a.negate() : a.clone();
- if (x.compareTo(y) < 0) {
- var t = x;
- x = y;
- y = t;
- }
- var i = x.getLowestSetBit();
- var g = y.getLowestSetBit();
- if (g < 0) {
- return x;
- }
- if (i < g) {
- g = i;
- }
- if (g > 0) {
- x.rShiftTo(g, x);
- y.rShiftTo(g, y);
- }
- while (x.signum() > 0) {
- if ((i = x.getLowestSetBit()) > 0) {
- x.rShiftTo(i, x);
- }
- if ((i = y.getLowestSetBit()) > 0) {
- y.rShiftTo(i, y);
- }
- if (x.compareTo(y) >= 0) {
- x.subTo(y, x);
- x.rShiftTo(1, x);
- }
- else {
- y.subTo(x, y);
- y.rShiftTo(1, y);
- }
- }
- if (g > 0) {
- y.lShiftTo(g, y);
- }
- return y;
- };
- // BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
- // (public) test primality with certainty >= 1-.5^t
- BigInteger.prototype.isProbablePrime = function (t) {
- var i;
- var x = this.abs();
- if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) {
- for (i = 0; i < lowprimes.length; ++i) {
- if (x[0] == lowprimes[i]) {
- return true;
- }
- }
- return false;
- }
- if (x.isEven()) {
- return false;
- }
- i = 1;
- while (i < lowprimes.length) {
- var m = lowprimes[i];
- var j = i + 1;
- while (j < lowprimes.length && m < lplim) {
- m *= lowprimes[j++];
- }
- m = x.modInt(m);
- while (i < j) {
- if (m % lowprimes[i++] == 0) {
- return false;
- }
- }
- }
- return x.millerRabin(t);
- };
- //#endregion PUBLIC
- //#region PROTECTED
- // BigInteger.prototype.copyTo = bnpCopyTo;
- // (protected) copy this to r
- BigInteger.prototype.copyTo = function (r) {
- for (var i = this.t - 1; i >= 0; --i) {
- r[i] = this[i];
- }
- r.t = this.t;
- r.s = this.s;
- };
- // BigInteger.prototype.fromInt = bnpFromInt;
- // (protected) set from integer value x, -DV <= x < DV
- BigInteger.prototype.fromInt = function (x) {
- this.t = 1;
- this.s = (x < 0) ? -1 : 0;
- if (x > 0) {
- this[0] = x;
- }
- else if (x < -1) {
- this[0] = x + this.DV;
- }
- else {
- this.t = 0;
- }
- };
- // BigInteger.prototype.fromString = bnpFromString;
- // (protected) set from string and radix
- BigInteger.prototype.fromString = function (s, b) {
- var k;
- if (b == 16) {
- k = 4;
- }
- else if (b == 8) {
- k = 3;
- }
- else if (b == 256) {
- k = 8;
- /* byte array */
- }
- else if (b == 2) {
- k = 1;
- }
- else if (b == 32) {
- k = 5;
- }
- else if (b == 4) {
- k = 2;
- }
- else {
- this.fromRadix(s, b);
- return;
- }
- this.t = 0;
- this.s = 0;
- var i = s.length;
- var mi = false;
- var sh = 0;
- while (--i >= 0) {
- var x = (k == 8) ? (+s[i]) & 0xff : intAt(s, i);
- if (x < 0) {
- if (s.charAt(i) == "-") {
- mi = true;
- }
- continue;
- }
- mi = false;
- if (sh == 0) {
- this[this.t++] = x;
- }
- else if (sh + k > this.DB) {
- this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
- this[this.t++] = (x >> (this.DB - sh));
- }
- else {
- this[this.t - 1] |= x << sh;
- }
- sh += k;
- if (sh >= this.DB) {
- sh -= this.DB;
- }
- }
- if (k == 8 && ((+s[0]) & 0x80) != 0) {
- this.s = -1;
- if (sh > 0) {
- this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
- }
- }
- this.clamp();
- if (mi) {
- BigInteger.ZERO.subTo(this, this);
- }
- };
- // BigInteger.prototype.clamp = bnpClamp;
- // (protected) clamp off excess high words
- BigInteger.prototype.clamp = function () {
- var c = this.s & this.DM;
- while (this.t > 0 && this[this.t - 1] == c) {
- --this.t;
- }
- };
- // BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
- // (protected) r = this << n*DB
- BigInteger.prototype.dlShiftTo = function (n, r) {
- var i;
- for (i = this.t - 1; i >= 0; --i) {
- r[i + n] = this[i];
- }
- for (i = n - 1; i >= 0; --i) {
- r[i] = 0;
- }
- r.t = this.t + n;
- r.s = this.s;
- };
- // BigInteger.prototype.drShiftTo = bnpDRShiftTo;
- // (protected) r = this >> n*DB
- BigInteger.prototype.drShiftTo = function (n, r) {
- for (var i = n; i < this.t; ++i) {
- r[i - n] = this[i];
- }
- r.t = Math.max(this.t - n, 0);
- r.s = this.s;
- };
- // BigInteger.prototype.lShiftTo = bnpLShiftTo;
- // (protected) r = this << n
- BigInteger.prototype.lShiftTo = function (n, r) {
- var bs = n % this.DB;
- var cbs = this.DB - bs;
- var bm = (1 << cbs) - 1;
- var ds = Math.floor(n / this.DB);
- var c = (this.s << bs) & this.DM;
- for (var i = this.t - 1; i >= 0; --i) {
- r[i + ds + 1] = (this[i] >> cbs) | c;
- c = (this[i] & bm) << bs;
- }
- for (var i = ds - 1; i >= 0; --i) {
- r[i] = 0;
- }
- r[ds] = c;
- r.t = this.t + ds + 1;
- r.s = this.s;
- r.clamp();
- };
- // BigInteger.prototype.rShiftTo = bnpRShiftTo;
- // (protected) r = this >> n
- BigInteger.prototype.rShiftTo = function (n, r) {
- r.s = this.s;
- var ds = Math.floor(n / this.DB);
- if (ds >= this.t) {
- r.t = 0;
- return;
- }
- var bs = n % this.DB;
- var cbs = this.DB - bs;
- var bm = (1 << bs) - 1;
- r[0] = this[ds] >> bs;
- for (var i = ds + 1; i < this.t; ++i) {
- r[i - ds - 1] |= (this[i] & bm) << cbs;
- r[i - ds] = this[i] >> bs;
- }
- if (bs > 0) {
- r[this.t - ds - 1] |= (this.s & bm) << cbs;
- }
- r.t = this.t - ds;
- r.clamp();
- };
- // BigInteger.prototype.subTo = bnpSubTo;
- // (protected) r = this - a
- BigInteger.prototype.subTo = function (a, r) {
- var i = 0;
- var c = 0;
- var m = Math.min(a.t, this.t);
- while (i < m) {
- c += this[i] - a[i];
- r[i++] = c & this.DM;
- c >>= this.DB;
- }
- if (a.t < this.t) {
- c -= a.s;
- while (i < this.t) {
- c += this[i];
- r[i++] = c & this.DM;
- c >>= this.DB;
- }
- c += this.s;
- }
- else {
- c += this.s;
- while (i < a.t) {
- c -= a[i];
- r[i++] = c & this.DM;
- c >>= this.DB;
- }
- c -= a.s;
- }
- r.s = (c < 0) ? -1 : 0;
- if (c < -1) {
- r[i++] = this.DV + c;
- }
- else if (c > 0) {
- r[i++] = c;
- }
- r.t = i;
- r.clamp();
- };
- // BigInteger.prototype.multiplyTo = bnpMultiplyTo;
- // (protected) r = this * a, r != this,a (HAC 14.12)
- // "this" should be the larger one if appropriate.
- BigInteger.prototype.multiplyTo = function (a, r) {
- var x = this.abs();
- var y = a.abs();
- var i = x.t;
- r.t = i + y.t;
- while (--i >= 0) {
- r[i] = 0;
- }
- for (i = 0; i < y.t; ++i) {
- r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
- }
- r.s = 0;
- r.clamp();
- if (this.s != a.s) {
- BigInteger.ZERO.subTo(r, r);
- }
- };
- // BigInteger.prototype.squareTo = bnpSquareTo;
- // (protected) r = this^2, r != this (HAC 14.16)
- BigInteger.prototype.squareTo = function (r) {
- var x = this.abs();
- var i = r.t = 2 * x.t;
- while (--i >= 0) {
- r[i] = 0;
- }
- for (i = 0; i < x.t - 1; ++i) {
- var c = x.am(i, x[i], r, 2 * i, 0, 1);
- if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
- r[i + x.t] -= x.DV;
- r[i + x.t + 1] = 1;
- }
- }
- if (r.t > 0) {
- r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
- }
- r.s = 0;
- r.clamp();
- };
- // BigInteger.prototype.divRemTo = bnpDivRemTo;
- // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
- // r != q, this != m. q or r may be null.
- BigInteger.prototype.divRemTo = function (m, q, r) {
- var pm = m.abs();
- if (pm.t <= 0) {
- return;
- }
- var pt = this.abs();
- if (pt.t < pm.t) {
- if (q != null) {
- q.fromInt(0);
- }
- if (r != null) {
- this.copyTo(r);
- }
- return;
- }
- if (r == null) {
- r = nbi();
- }
- var y = nbi();
- var ts = this.s;
- var ms = m.s;
- var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus
- if (nsh > 0) {
- pm.lShiftTo(nsh, y);
- pt.lShiftTo(nsh, r);
- }
- else {
- pm.copyTo(y);
- pt.copyTo(r);
- }
- var ys = y.t;
- var y0 = y[ys - 1];
- if (y0 == 0) {
- return;
- }
- var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0);
- var d1 = this.FV / yt;
- var d2 = (1 << this.F1) / yt;
- var e = 1 << this.F2;
- var i = r.t;
- var j = i - ys;
- var t = (q == null) ? nbi() : q;
- y.dlShiftTo(j, t);
- if (r.compareTo(t) >= 0) {
- r[r.t++] = 1;
- r.subTo(t, r);
- }
- BigInteger.ONE.dlShiftTo(ys, t);
- t.subTo(y, y); // "negative" y so we can replace sub with am later
- while (y.t < ys) {
- y[y.t++] = 0;
- }
- while (--j >= 0) {
- // Estimate quotient digit
- var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
- if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out
- y.dlShiftTo(j, t);
- r.subTo(t, r);
- while (r[i] < --qd) {
- r.subTo(t, r);
- }
- }
- }
- if (q != null) {
- r.drShiftTo(ys, q);
- if (ts != ms) {
- BigInteger.ZERO.subTo(q, q);
- }
- }
- r.t = ys;
- r.clamp();
- if (nsh > 0) {
- r.rShiftTo(nsh, r);
- } // Denormalize remainder
- if (ts < 0) {
- BigInteger.ZERO.subTo(r, r);
- }
- };
- // BigInteger.prototype.invDigit = bnpInvDigit;
- // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
- // justification:
- // xy == 1 (mod m)
- // xy = 1+km
- // xy(2-xy) = (1+km)(1-km)
- // x[y(2-xy)] = 1-k^2m^2
- // x[y(2-xy)] == 1 (mod m^2)
- // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
- // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
- // JS multiply "overflows" differently from C/C++, so care is needed here.
- BigInteger.prototype.invDigit = function () {
- if (this.t < 1) {
- return 0;
- }
- var x = this[0];
- if ((x & 1) == 0) {
- return 0;
- }
- var y = x & 3; // y == 1/x mod 2^2
- y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
- y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
- y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
- // last step - calculate inverse mod DV directly;
- // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
- y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits
- // we really want the negative inverse, and -DV < y < DV
- return (y > 0) ? this.DV - y : -y;
- };
- // BigInteger.prototype.isEven = bnpIsEven;
- // (protected) true iff this is even
- BigInteger.prototype.isEven = function () {
- return ((this.t > 0) ? (this[0] & 1) : this.s) == 0;
- };
- // BigInteger.prototype.exp = bnpExp;
- // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
- BigInteger.prototype.exp = function (e, z) {
- if (e > 0xffffffff || e < 1) {
- return BigInteger.ONE;
- }
- var r = nbi();
- var r2 = nbi();
- var g = z.convert(this);
- var i = nbits(e) - 1;
- g.copyTo(r);
- while (--i >= 0) {
- z.sqrTo(r, r2);
- if ((e & (1 << i)) > 0) {
- z.mulTo(r2, g, r);
- }
- else {
- var t = r;
- r = r2;
- r2 = t;
- }
- }
- return z.revert(r);
- };
- // BigInteger.prototype.chunkSize = bnpChunkSize;
- // (protected) return x s.t. r^x < DV
- BigInteger.prototype.chunkSize = function (r) {
- return Math.floor(Math.LN2 * this.DB / Math.log(r));
- };
- // BigInteger.prototype.toRadix = bnpToRadix;
- // (protected) convert to radix string
- BigInteger.prototype.toRadix = function (b) {
- if (b == null) {
- b = 10;
- }
- if (this.signum() == 0 || b < 2 || b > 36) {
- return "0";
- }
- var cs = this.chunkSize(b);
- var a = Math.pow(b, cs);
- var d = nbv(a);
- var y = nbi();
- var z = nbi();
- var r = "";
- this.divRemTo(d, y, z);
- while (y.signum() > 0) {
- r = (a + z.intValue()).toString(b).substr(1) + r;
- y.divRemTo(d, y, z);
- }
- return z.intValue().toString(b) + r;
- };
- // BigInteger.prototype.fromRadix = bnpFromRadix;
- // (protected) convert from radix string
- BigInteger.prototype.fromRadix = function (s, b) {
- this.fromInt(0);
- if (b == null) {
- b = 10;
- }
- var cs = this.chunkSize(b);
- var d = Math.pow(b, cs);
- var mi = false;
- var j = 0;
- var w = 0;
- for (var i = 0; i < s.length; ++i) {
- var x = intAt(s, i);
- if (x < 0) {
- if (s.charAt(i) == "-" && this.signum() == 0) {
- mi = true;
- }
- continue;
- }
- w = b * w + x;
- if (++j >= cs) {
- this.dMultiply(d);
- this.dAddOffset(w, 0);
- j = 0;
- w = 0;
- }
- }
- if (j > 0) {
- this.dMultiply(Math.pow(b, j));
- this.dAddOffset(w, 0);
- }
- if (mi) {
- BigInteger.ZERO.subTo(this, this);
- }
- };
- // BigInteger.prototype.fromNumber = bnpFromNumber;
- // (protected) alternate constructor
- BigInteger.prototype.fromNumber = function (a, b, c) {
- if ("number" == typeof b) {
- // new BigInteger(int,int,RNG)
- if (a < 2) {
- this.fromInt(1);
- }
- else {
- this.fromNumber(a, c);
- if (!this.testBit(a - 1)) {
- // force MSB set
- this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
- }
- if (this.isEven()) {
- this.dAddOffset(1, 0);
- } // force odd
- while (!this.isProbablePrime(b)) {
- this.dAddOffset(2, 0);
- if (this.bitLength() > a) {
- this.subTo(BigInteger.ONE.shiftLeft(a - 1), this);
- }
- }
- }
- }
- else {
- // new BigInteger(int,RNG)
- var x = [];
- var t = a & 7;
- x.length = (a >> 3) + 1;
- b.nextBytes(x);
- if (t > 0) {
- x[0] &= ((1 << t) - 1);
- }
- else {
- x[0] = 0;
- }
- this.fromString(x, 256);
- }
- };
- // BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
- // (protected) r = this op a (bitwise)
- BigInteger.prototype.bitwiseTo = function (a, op, r) {
- var i;
- var f;
- var m = Math.min(a.t, this.t);
- for (i = 0; i < m; ++i) {
- r[i] = op(this[i], a[i]);
- }
- if (a.t < this.t) {
- f = a.s & this.DM;
- for (i = m; i < this.t; ++i) {
- r[i] = op(this[i], f);
- }
- r.t = this.t;
- }
- else {
- f = this.s & this.DM;
- for (i = m; i < a.t; ++i) {
- r[i] = op(f, a[i]);
- }
- r.t = a.t;
- }
- r.s = op(this.s, a.s);
- r.clamp();
- };
- // BigInteger.prototype.changeBit = bnpChangeBit;
- // (protected) this op (1<<n)
- BigInteger.prototype.changeBit = function (n, op) {
- var r = BigInteger.ONE.shiftLeft(n);
- this.bitwiseTo(r, op, r);
- return r;
- };
- // BigInteger.prototype.addTo = bnpAddTo;
- // (protected) r = this + a
- BigInteger.prototype.addTo = function (a, r) {
- var i = 0;
- var c = 0;
- var m = Math.min(a.t, this.t);
- while (i < m) {
- c += this[i] + a[i];
- r[i++] = c & this.DM;
- c >>= this.DB;
- }
- if (a.t < this.t) {
- c += a.s;
- while (i < this.t) {
- c += this[i];
- r[i++] = c & this.DM;
- c >>= this.DB;
- }
- c += this.s;
- }
- else {
- c += this.s;
- while (i < a.t) {
- c += a[i];
- r[i++] = c & this.DM;
- c >>= this.DB;
- }
- c += a.s;
- }
- r.s = (c < 0) ? -1 : 0;
- if (c > 0) {
- r[i++] = c;
- }
- else if (c < -1) {
- r[i++] = this.DV + c;
- }
- r.t = i;
- r.clamp();
- };
- // BigInteger.prototype.dMultiply = bnpDMultiply;
- // (protected) this *= n, this >= 0, 1 < n < DV
- BigInteger.prototype.dMultiply = function (n) {
- this[this.t] = this.am(0, n - 1, this, 0, 0, this.t);
- ++this.t;
- this.clamp();
- };
- // BigInteger.prototype.dAddOffset = bnpDAddOffset;
- // (protected) this += n << w words, this >= 0
- BigInteger.prototype.dAddOffset = function (n, w) {
- if (n == 0) {
- return;
- }
- while (this.t <= w) {
- this[this.t++] = 0;
- }
- this[w] += n;
- while (this[w] >= this.DV) {
- this[w] -= this.DV;
- if (++w >= this.t) {
- this[this.t++] = 0;
- }
- ++this[w];
- }
- };
- // BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
- // (protected) r = lower n words of "this * a", a.t <= n
- // "this" should be the larger one if appropriate.
- BigInteger.prototype.multiplyLowerTo = function (a, n, r) {
- var i = Math.min(this.t + a.t, n);
- r.s = 0; // assumes a,this >= 0
- r.t = i;
- while (i > 0) {
- r[--i] = 0;
- }
- for (var j = r.t - this.t; i < j; ++i) {
- r[i + this.t] = this.am(0, a[i], r, i, 0, this.t);
- }
- for (var j = Math.min(a.t, n); i < j; ++i) {
- this.am(0, a[i], r, i, 0, n - i);
- }
- r.clamp();
- };
- // BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
- // (protected) r = "this * a" without lower n words, n > 0
- // "this" should be the larger one if appropriate.
- BigInteger.prototype.multiplyUpperTo = function (a, n, r) {
- --n;
- var i = r.t = this.t + a.t - n;
- r.s = 0; // assumes a,this >= 0
- while (--i >= 0) {
- r[i] = 0;
- }
- for (i = Math.max(n - this.t, 0); i < a.t; ++i) {
- r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n);
- }
- r.clamp();
- r.drShiftTo(1, r);
- };
- // BigInteger.prototype.modInt = bnpModInt;
- // (protected) this % n, n < 2^26
- BigInteger.prototype.modInt = function (n) {
- if (n <= 0) {
- return 0;
- }
- var d = this.DV % n;
- var r = (this.s < 0) ? n - 1 : 0;
- if (this.t > 0) {
- if (d == 0) {
- r = this[0] % n;
- }
- else {
- for (var i = this.t - 1; i >= 0; --i) {
- r = (d * r + this[i]) % n;
- }
- }
- }
- return r;
- };
- // BigInteger.prototype.millerRabin = bnpMillerRabin;
- // (protected) true if probably prime (HAC 4.24, Miller-Rabin)
- BigInteger.prototype.millerRabin = function (t) {
- var n1 = this.subtract(BigInteger.ONE);
- var k = n1.getLowestSetBit();
- if (k <= 0) {
- return false;
- }
- var r = n1.shiftRight(k);
- t = (t + 1) >> 1;
- if (t > lowprimes.length) {
- t = lowprimes.length;
- }
- var a = nbi();
- for (var i = 0; i < t; ++i) {
- // Pick bases at random, instead of starting at 2
- a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]);
- var y = a.modPow(r, this);
- if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
- var j = 1;
- while (j++ < k && y.compareTo(n1) != 0) {
- y = y.modPowInt(2, this);
- if (y.compareTo(BigInteger.ONE) == 0) {
- return false;
- }
- }
- if (y.compareTo(n1) != 0) {
- return false;
- }
- }
- }
- return true;
- };
- // BigInteger.prototype.square = bnSquare;
- // (public) this^2
- BigInteger.prototype.square = function () {
- var r = nbi();
- this.squareTo(r);
- return r;
- };
- //#region ASYNC
- // Public API method
- BigInteger.prototype.gcda = function (a, callback) {
- var x = (this.s < 0) ? this.negate() : this.clone();
- var y = (a.s < 0) ? a.negate() : a.clone();
- if (x.compareTo(y) < 0) {
- var t = x;
- x = y;
- y = t;
- }
- var i = x.getLowestSetBit();
- var g = y.getLowestSetBit();
- if (g < 0) {
- callback(x);
- return;
- }
- if (i < g) {
- g = i;
- }
- if (g > 0) {
- x.rShiftTo(g, x);
- y.rShiftTo(g, y);
- }
- // Workhorse of the algorithm, gets called 200 - 800 times per 512 bit keygen.
- var gcda1 = function () {
- if ((i = x.getLowestSetBit()) > 0) {
- x.rShiftTo(i, x);
- }
- if ((i = y.getLowestSetBit()) > 0) {
- y.rShiftTo(i, y);
- }
- if (x.compareTo(y) >= 0) {
- x.subTo(y, x);
- x.rShiftTo(1, x);
- }
- else {
- y.subTo(x, y);
- y.rShiftTo(1, y);
- }
- if (!(x.signum() > 0)) {
- if (g > 0) {
- y.lShiftTo(g, y);
- }
- setTimeout(function () { callback(y); }, 0); // escape
- }
- else {
- setTimeout(gcda1, 0);
- }
- };
- setTimeout(gcda1, 10);
- };
- // (protected) alternate constructor
- BigInteger.prototype.fromNumberAsync = function (a, b, c, callback) {
- if ("number" == typeof b) {
- if (a < 2) {
- this.fromInt(1);
- }
- else {
- this.fromNumber(a, c);
- if (!this.testBit(a - 1)) {
- this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
- }
- if (this.isEven()) {
- this.dAddOffset(1, 0);
- }
- var bnp_1 = this;
- var bnpfn1_1 = function () {
- bnp_1.dAddOffset(2, 0);
- if (bnp_1.bitLength() > a) {
- bnp_1.subTo(BigInteger.ONE.shiftLeft(a - 1), bnp_1);
- }
- if (bnp_1.isProbablePrime(b)) {
- setTimeout(function () { callback(); }, 0); // escape
- }
- else {
- setTimeout(bnpfn1_1, 0);
- }
- };
- setTimeout(bnpfn1_1, 0);
- }
- }
- else {
- var x = [];
- var t = a & 7;
- x.length = (a >> 3) + 1;
- b.nextBytes(x);
- if (t > 0) {
- x[0] &= ((1 << t) - 1);
- }
- else {
- x[0] = 0;
- }
- this.fromString(x, 256);
- }
- };
- return BigInteger;
- }());
- export { BigInteger };
- //#region REDUCERS
- //#region NullExp
- var NullExp = /** @class */ (function () {
- function NullExp() {
- }
- // NullExp.prototype.convert = nNop;
- NullExp.prototype.convert = function (x) {
- return x;
- };
- // NullExp.prototype.revert = nNop;
- NullExp.prototype.revert = function (x) {
- return x;
- };
- // NullExp.prototype.mulTo = nMulTo;
- NullExp.prototype.mulTo = function (x, y, r) {
- x.multiplyTo(y, r);
- };
- // NullExp.prototype.sqrTo = nSqrTo;
- NullExp.prototype.sqrTo = function (x, r) {
- x.squareTo(r);
- };
- return NullExp;
- }());
- // Modular reduction using "classic" algorithm
- var Classic = /** @class */ (function () {
- function Classic(m) {
- this.m = m;
- }
- // Classic.prototype.convert = cConvert;
- Classic.prototype.convert = function (x) {
- if (x.s < 0 || x.compareTo(this.m) >= 0) {
- return x.mod(this.m);
- }
- else {
- return x;
- }
- };
- // Classic.prototype.revert = cRevert;
- Classic.prototype.revert = function (x) {
- return x;
- };
- // Classic.prototype.reduce = cReduce;
- Classic.prototype.reduce = function (x) {
- x.divRemTo(this.m, null, x);
- };
- // Classic.prototype.mulTo = cMulTo;
- Classic.prototype.mulTo = function (x, y, r) {
- x.multiplyTo(y, r);
- this.reduce(r);
- };
- // Classic.prototype.sqrTo = cSqrTo;
- Classic.prototype.sqrTo = function (x, r) {
- x.squareTo(r);
- this.reduce(r);
- };
- return Classic;
- }());
- //#endregion
- //#region Montgomery
- // Montgomery reduction
- var Montgomery = /** @class */ (function () {
- function Montgomery(m) {
- this.m = m;
- this.mp = m.invDigit();
- this.mpl = this.mp & 0x7fff;
- this.mph = this.mp >> 15;
- this.um = (1 << (m.DB - 15)) - 1;
- this.mt2 = 2 * m.t;
- }
- // Montgomery.prototype.convert = montConvert;
- // xR mod m
- Montgomery.prototype.convert = function (x) {
- var r = nbi();
- x.abs().dlShiftTo(this.m.t, r);
- r.divRemTo(this.m, null, r);
- if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) {
- this.m.subTo(r, r);
- }
- return r;
- };
- // Montgomery.prototype.revert = montRevert;
- // x/R mod m
- Montgomery.prototype.revert = function (x) {
- var r = nbi();
- x.copyTo(r);
- this.reduce(r);
- return r;
- };
- // Montgomery.prototype.reduce = montReduce;
- // x = x/R mod m (HAC 14.32)
- Montgomery.prototype.reduce = function (x) {
- while (x.t <= this.mt2) {
- // pad x so am has enough room later
- x[x.t++] = 0;
- }
- for (var i = 0; i < this.m.t; ++i) {
- // faster way of calculating u0 = x[i]*mp mod DV
- var j = x[i] & 0x7fff;
- var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM;
- // use am to combine the multiply-shift-add into one call
- j = i + this.m.t;
- x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
- // propagate carry
- while (x[j] >= x.DV) {
- x[j] -= x.DV;
- x[++j]++;
- }
- }
- x.clamp();
- x.drShiftTo(this.m.t, x);
- if (x.compareTo(this.m) >= 0) {
- x.subTo(this.m, x);
- }
- };
- // Montgomery.prototype.mulTo = montMulTo;
- // r = "xy/R mod m"; x,y != r
- Montgomery.prototype.mulTo = function (x, y, r) {
- x.multiplyTo(y, r);
- this.reduce(r);
- };
- // Montgomery.prototype.sqrTo = montSqrTo;
- // r = "x^2/R mod m"; x != r
- Montgomery.prototype.sqrTo = function (x, r) {
- x.squareTo(r);
- this.reduce(r);
- };
- return Montgomery;
- }());
- //#endregion Montgomery
- //#region Barrett
- // Barrett modular reduction
- var Barrett = /** @class */ (function () {
- function Barrett(m) {
- this.m = m;
- // setup Barrett
- this.r2 = nbi();
- this.q3 = nbi();
- BigInteger.ONE.dlShiftTo(2 * m.t, this.r2);
- this.mu = this.r2.divide(m);
- }
- // Barrett.prototype.convert = barrettConvert;
- Barrett.prototype.convert = function (x) {
- if (x.s < 0 || x.t > 2 * this.m.t) {
- return x.mod(this.m);
- }
- else if (x.compareTo(this.m) < 0) {
- return x;
- }
- else {
- var r = nbi();
- x.copyTo(r);
- this.reduce(r);
- return r;
- }
- };
- // Barrett.prototype.revert = barrettRevert;
- Barrett.prototype.revert = function (x) {
- return x;
- };
- // Barrett.prototype.reduce = barrettReduce;
- // x = x mod m (HAC 14.42)
- Barrett.prototype.reduce = function (x) {
- x.drShiftTo(this.m.t - 1, this.r2);
- if (x.t > this.m.t + 1) {
- x.t = this.m.t + 1;
- x.clamp();
- }
- this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3);
- this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2);
- while (x.compareTo(this.r2) < 0) {
- x.dAddOffset(1, this.m.t + 1);
- }
- x.subTo(this.r2, x);
- while (x.compareTo(this.m) >= 0) {
- x.subTo(this.m, x);
- }
- };
- // Barrett.prototype.mulTo = barrettMulTo;
- // r = x*y mod m; x,y != r
- Barrett.prototype.mulTo = function (x, y, r) {
- x.multiplyTo(y, r);
- this.reduce(r);
- };
- // Barrett.prototype.sqrTo = barrettSqrTo;
- // r = x^2 mod m; x != r
- Barrett.prototype.sqrTo = function (x, r) {
- x.squareTo(r);
- this.reduce(r);
- };
- return Barrett;
- }());
- //#endregion
- //#endregion REDUCERS
- // return new, unset BigInteger
- export function nbi() { return new BigInteger(null); }
- export function parseBigInt(str, r) {
- return new BigInteger(str, r);
- }
- // am: Compute w_j += (x*this_i), propagate carries,
- // c is initial carry, returns final carry.
- // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
- // We need to select the fastest one that works in this environment.
- var inBrowser = typeof navigator !== "undefined";
- if (inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
- // am2 avoids a big mult-and-extract completely.
- // Max digit bits should be <= 30 because we do bitwise ops
- // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
- BigInteger.prototype.am = function am2(i, x, w, j, c, n) {
- var xl = x & 0x7fff;
- var xh = x >> 15;
- while (--n >= 0) {
- var l = this[i] & 0x7fff;
- var h = this[i++] >> 15;
- var m = xh * l + h * xl;
- l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
- c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
- w[j++] = l & 0x3fffffff;
- }
- return c;
- };
- dbits = 30;
- }
- else if (inBrowser && j_lm && (navigator.appName != "Netscape")) {
- // am1: use a single mult and divide to get the high bits,
- // max digit bits should be 26 because
- // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
- BigInteger.prototype.am = function am1(i, x, w, j, c, n) {
- while (--n >= 0) {
- var v = x * this[i++] + w[j] + c;
- c = Math.floor(v / 0x4000000);
- w[j++] = v & 0x3ffffff;
- }
- return c;
- };
- dbits = 26;
- }
- else { // Mozilla/Netscape seems to prefer am3
- // Alternately, set max digit bits to 28 since some
- // browsers slow down when dealing with 32-bit numbers.
- BigInteger.prototype.am = function am3(i, x, w, j, c, n) {
- var xl = x & 0x3fff;
- var xh = x >> 14;
- while (--n >= 0) {
- var l = this[i] & 0x3fff;
- var h = this[i++] >> 14;
- var m = xh * l + h * xl;
- l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
- c = (l >> 28) + (m >> 14) + xh * h;
- w[j++] = l & 0xfffffff;
- }
- return c;
- };
- dbits = 28;
- }
- BigInteger.prototype.DB = dbits;
- BigInteger.prototype.DM = ((1 << dbits) - 1);
- BigInteger.prototype.DV = (1 << dbits);
- var BI_FP = 52;
- BigInteger.prototype.FV = Math.pow(2, BI_FP);
- BigInteger.prototype.F1 = BI_FP - dbits;
- BigInteger.prototype.F2 = 2 * dbits - BI_FP;
- // Digit conversions
- var BI_RC = [];
- var rr;
- var vv;
- rr = "0".charCodeAt(0);
- for (vv = 0; vv <= 9; ++vv) {
- BI_RC[rr++] = vv;
- }
- rr = "a".charCodeAt(0);
- for (vv = 10; vv < 36; ++vv) {
- BI_RC[rr++] = vv;
- }
- rr = "A".charCodeAt(0);
- for (vv = 10; vv < 36; ++vv) {
- BI_RC[rr++] = vv;
- }
- export function intAt(s, i) {
- var c = BI_RC[s.charCodeAt(i)];
- return (c == null) ? -1 : c;
- }
- // return bigint initialized to value
- export function nbv(i) {
- var r = nbi();
- r.fromInt(i);
- return r;
- }
- // returns bit length of the integer x
- export function nbits(x) {
- var r = 1;
- var t;
- if ((t = x >>> 16) != 0) {
- x = t;
- r += 16;
- }
- if ((t = x >> 8) != 0) {
- x = t;
- r += 8;
- }
- if ((t = x >> 4) != 0) {
- x = t;
- r += 4;
- }
- if ((t = x >> 2) != 0) {
- x = t;
- r += 2;
- }
- if ((t = x >> 1) != 0) {
- x = t;
- r += 1;
- }
- return r;
- }
- // "constants"
- BigInteger.ZERO = nbv(0);
- BigInteger.ONE = nbv(1);
|